From the Editors’ Desks

We’ve had a busy summer, which is good news, with both the Blankenberge conference and EASE representation at a range of events. Eva Baranyiová was invited to Tokyo for the annual meeting of the Asia Pacific Association of Medical Journal Editors (APAME), giving a well-received talk on publication ethics (see Eva’s report on p100). At the beginning of October, I went to Seoul as the guest of the Korean Council of Science Editors. The occasion was the inaugural Asian Science Editors’ Forum, at which we explored the possibilities for the same sort of pan-regional cooperation as being established by APAME. I was very impressed by the drive and organization of our Korean colleagues. They are gradually training all journal editorial staff in Korea – and using the EASE Science Editors’ Handbook as core material. We will continue to discuss opportunities, and I hope to see further collaboration between EASE and our counterparts in Asia.

On the other side of the world, Paola De Castro has been working with the Mexican Association of Biomedical Journal Editors, and we expect to see a Mexican chapter affiliated to EASE in the near future.

Closer to home, 85 delegates enjoyed a very successful conference in Blankenberge. Many thanks to Chris Sterken for recommending an excellent hotel in this Belgian seaside town: even the weather held for bracing walks on the seafront. The first day was organized by the International Association of Medical and Technical Editors, while the second day was a joint venture between ISMTE and EASE. It meant that the programme was oriented almost exclusively towards journal editors. As this was an additional EASE event, we hope that our other members won’t mind. I had a worrying moment, when someone said to me: “I think I’ve joined the wrong organization.” On discovering that she was a member of EASE who worked as a freelance, I replied that she had joined the correct organization but come to the wrong meeting! Our conference in Split next summer will have something for everyone. Meanwhile, the new member, Elaine Seery, is going to help manage the website. So come to an EASE event and get involved!

Joan Marsh
Editorial

Education, education, education

In October, Science published a description of a sting operation by John Bohannon (no affiliation given). Mr Bohannon had tested the peer review procedures of 304 open access publishers by sending computer-generated versions of a manuscript that contained methodological and ethical flaws. At the time of publication, 157 of the journals had accepted the paper and 98 had rejected it. The paper prompted a flurry of discussion in the blogosphere, including criticism of Science and the author for publishing this as a news item rather than a peer-reviewed research article.

Rather than debate the rights and wrongs of this approach, I would like to consider how we at the European Association of Science Editors (EASE) can address the fundamental problem raised which is that journals, many with respected scientists or clinicians on their editorial teams and some published by high profile international publishers, did not have procedures in place to spot the mistakes in the paper. In the Science experiment, of the 106 journals that had the paper reviewed, 70% accepted it. Most of the reviewers’ comments apparently concerned superficial matters that are the responsibility of the copy editor: layout, formatting and language. Only 36 journals sent reviewer comments that addressed the paper’s scientific problems, and 16 of those papers were accepted by the editors despite the damning reviews. So we need to educate both the peer reviewers and the editors.

EASE is pursuing this in several ways. In September, we launched the new edition of our Science Editors’ Handbook. This contains an excellent section on peer review. I strongly urge all journal editors to read these chapters and to encourage all their editorial staff and board members to do so. To facilitate dissemination of this information to all scientists and clinicians engaged in peer review, EASE has compiled two slide sets that can be used for training. These will be freely available for academics and under licence for commercial use. We are also considering Train the Trainer sessions for journal staff or board members who would be interested.

Straight after the launch, I flew to Korea, to attend the inaugural Asian Science Editors’ Forum. This was hosted by the Korean Council of Science Editors, a very dynamic group, with the aim of exploring how different communities of science editors in Asia can communicate. For medical editors, there is already APAME, the Asia-Pacific Association of Medical Editors: a report on their annual meeting appears in this issue. The atmosphere was congenial with everyone keen to work together to improve the standards of editing in their country and throughout the region. EASE will continue to collaborate, providing materials and perhaps trainers, where possible. We have excellent resources and it is important to share these to achieve maximum benefit, rather than have people spend time preparing materials of their own where these already exist. Our efforts should be on dissemination and education.

EASE has been engaged in another series of training initiatives this year, working with the publisher, John Wiley & Sons. Paola De Castro, Reme Melero and Sylwia Ufnalska are each representing EASE at educational seminars organized by Wiley in association with librarians at various academic institutes in Italy, Spain and Poland, respectively. We hope to continue building this relationship and expanding to other countries.

EASE would welcome approaches from other publishers, journals or institutions to replicate these activities. We would also welcome suggestions for other types of training that would benefit those engaged in science communication. We see ourselves as facilitators: helping to provide educational materials and to link those engaged in similar activities so that we all benefit from synergies rather than competition. There is much to be done: by working together we can achieve more.

Joan Marsh MA PhD
EASE President
president@ease.org.uk

Reference
Bohannon J Who’s afraid of peer review? Science Vol 342, 4 October 2013 60-65

Front row, left to right: Hye-Min Cho, Shilun Qiu, Jong Kyu Ha, Joan Marsh, Jung-II Jin, Hae Won Kim, Mitsuo Sawamoto, Komang Gede Wiryawan

Back row, left to right: Eun Jeong Kim, Cheol Heui Yun, Hyun Jung Yi, Hyo Seon Ryu, Myung-Soon Kim, Kihong Kim, Hyungsun Kim, Sun Huh, Eunseong Hwang, Tae-Sul Seo
Abstract This paper analyses the current state of science editing in Russia. We describe the characteristics of science editing and the reputation of scholarly journals in Russia. We surveyed non-teaching staff, students and professionals in Moscow and analysed statistical information of the Scientific Electronic Library (Moscow, Russia). We present the main subject categories, number of published journals, major Russian publishers, research performance assessment, and problems encountered by authors and editors in Russia. Information distributed by Russian scholarly journals is credible. Better quality editorial work can improve the reputation of a Russian journal further. Cooperation with EASE could be instrumental in improving the quality of science editing.

Keywords Periodicals as topic, communication, Russia.

Introduction
Science editing in Russia has a long history. The first stage of its development dates back to the 19th century, when numerous specialised biomedical, legal, social and other periodicals were launched. Throughout the 20th century new forms and methods of editing were implemented, Russian journals gained international recognition and were catalogued by databases globally. Scholarly communication and international cooperation in scientific publishing intensified in the second half of the 20th century. Digital technologies and the Internet enormously influenced scholarly information processing and scientific publishing.

The Russian governance model has specific characteristics, such as considerable governmental regulatory influence and weak public and informal institutes, which affect many areas of academic life including research and development, the functions of academic institutions and journal editing.

Very few papers have analysed the state of science editing in Russia. There have been reports on editing generally as well as in medicine and architecture, primarily focused on solving problems with editing in Russia.

In 2012, the Russian Regional Chapter of the European Association of Science Editors (EASE) was launched and one of its aims was to develop science editing in Russia. The current paper is a part of activities of this Chapter. It analyses the characteristics of science editing and the reputation of scholarly journals in Russia. It also outlines the opportunities and benefits of cooperation with EASE.

Methods
We used statistical information freely available through the Scientific Electronic Library (SEL), elibrary.ru. The primary source of information on the reputation of Russian science journals was our own paper published in the Journal of Reputiology. In 2010-2011 we distributed 132 questionnaires to non-teaching staff, students and professionals at the Russian Academy of Justice, Russian Customs Academy, Tax Academy of the Russian Federation, Maimonides State Classical Academy and others in Moscow. The questionnaire addressed: the reputation of Russian journals and the factors determining this; which were deemed to be the best journals in specific fields of science; and what should be in the journals and how they should work to improve their reputation. The respondents were selected to represent the population at large, and each was interviewed individually. We received 100 completed questionnaires.

Results & Discussion
Information from the SEL indicates that about 3,500 scholarly journals are published in Russia. More than 2,300,000 articles were published in these journals in 2005-2012. Information on more than 600,000 authors of these articles is recorded in the library database. 1,700 journals are now freely available in SEL. As of January 2013, the main subject categories covered by the library are economics, medicine, juridical science and education (Table 1). Interdisciplinary journals were included in several subject categories.

Table 1. Main subject categories and number of journals in SEL (as of January 2013)

<table>
<thead>
<tr>
<th>Subject categories</th>
<th>Number of journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>635</td>
</tr>
<tr>
<td>Medicine and health</td>
<td>585</td>
</tr>
<tr>
<td>Legal sciences</td>
<td>477</td>
</tr>
<tr>
<td>Education</td>
<td>356</td>
</tr>
<tr>
<td>Biology</td>
<td>292</td>
</tr>
<tr>
<td>Historical studies</td>
<td>270</td>
</tr>
<tr>
<td>Physical science</td>
<td>251</td>
</tr>
<tr>
<td>Mathematics</td>
<td>221</td>
</tr>
</tbody>
</table>
There are about 2,800 scientific publishers in Russia. Large publishers are based in Moscow, Saint Petersburg, Novosibirsk, Rostov on Don, Penza and other big cities. The top 10 Russian publishers represented in SEL are listed in Table 2. These include companies that publish and distribute journals and books as well as organisations that process scientific literature.

Table 2. Top 10 Russian publishers represented in SEL (as of January 2013)

<table>
<thead>
<tr>
<th>Publishers*</th>
<th>City</th>
<th>Number of articles in SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>«NTI-KOMPAKT»</td>
<td>Moscow</td>
<td>327,046</td>
</tr>
<tr>
<td>MAIK Nauka/Interperiodica</td>
<td>Moscow</td>
<td>135,992</td>
</tr>
<tr>
<td>“Nauka”, Russian Academy of Sciences</td>
<td>Moscow</td>
<td>121,272</td>
</tr>
<tr>
<td>Central Scientific Agricultural Library, Russian Academy of Agricultural Sciences</td>
<td>Moscow</td>
<td>67,396</td>
</tr>
<tr>
<td>Institute of Scientific Information for Social Sciences, Russian Academy of Sciences</td>
<td>Moscow</td>
<td>23,735</td>
</tr>
<tr>
<td>“Academy of Natural History”</td>
<td>Penza</td>
<td>21,393</td>
</tr>
<tr>
<td>“Meditsina”</td>
<td>Moscow</td>
<td>21,366</td>
</tr>
<tr>
<td>Publishing Group "Jurist"</td>
<td>Moscow</td>
<td>18,935</td>
</tr>
<tr>
<td>Russian Foundation for Basic Research</td>
<td>Moscow</td>
<td>18,325</td>
</tr>
<tr>
<td>“Publishing house FINANCES and CREDIT”</td>
<td>Moscow</td>
<td>17,535</td>
</tr>
</tbody>
</table>

*All in Moscow except the Academy of Natural History which is in Penza.

SEL also provides information on the most productive Russian scientists based on the number of published papers and citations recorded by this library. The four leading scientists are Valiev RZ, Eidelman SI, Ledentsov NN and Uversky VN. They work at physical and technical institutions of Moscow, Saint Petersburg, Novosibirsk and Ufa. The most productive Russian institutions are also in major cities (Table 4).

SEL also provides information on the most productive Russian scientists based on the number of published papers and citations recorded by this library. The four leading scientists are Valiev RZ, Eidelman SI, Ledentsov NN and Uversky VN. They work at physical and technical institutions of Moscow, Saint Petersburg, Novosibirsk and Ufa. The most productive Russian institutions are also in major cities (Table 4).

Russian institutions are expanding cooperation with major international publishers, eg some journals of MAIK Nauka/Interperiodica Publishing are indexed by SCOPUS (Elsevier), and launching new journals such as Bulletin of Agrarian and Industrial Complex of Stavropol State Agrarian University. All published journals are subject to approval by the Supreme Attesting Commission (VAK).

Representation of Russian journals in international databases

Only one in ten publications of Russian authors is indexed by international databases. The achievements of Russian science, particularly in social sciences and humanities, are especially poorly covered by the databases. Currently 169 Russian journals are indexed in Web of Science (WoS), including 13 accepted in the last three years. The largest number of Russian journals is listed in the Science Citation Index Expanded (SCI-E) – 157, followed by Arts and Humanities Citation Index – 7 and Social Sciences Citation Index – 5. No Russian journal in economics, political science or arts is indexed by WoS.

Research performance indicators

SEL ranks Russian journals based on scoring in its Science Index database, which puts physics and chemistry journals at the top (Table 3). The scoring system assesses the number of articles, number of bibliographic links, citations, etc.

Table 3. Top 10 Russian science journals according to the Science Index by SEL (January 2013)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Journal titles</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JETP Letters</td>
<td>943612</td>
</tr>
<tr>
<td>2</td>
<td>Semiconductor Physics and Technology</td>
<td>380137</td>
</tr>
<tr>
<td>3</td>
<td>Semiconductors</td>
<td>376548</td>
</tr>
<tr>
<td>4</td>
<td>Physics of the Solid State</td>
<td>320332</td>
</tr>
<tr>
<td>5</td>
<td>Low Temperature Physics</td>
<td>259392</td>
</tr>
<tr>
<td>6</td>
<td>Doklady Akademii Nauk</td>
<td>236205</td>
</tr>
<tr>
<td>7</td>
<td>Physics-Uspekhi</td>
<td>199046</td>
</tr>
<tr>
<td>8</td>
<td>Physics of Atomic Nuclei</td>
<td>144214</td>
</tr>
<tr>
<td>9</td>
<td>Russian Chemical Bulletin</td>
<td>142566</td>
</tr>
<tr>
<td>10</td>
<td>Russian Chemical Reviews</td>
<td>132742</td>
</tr>
</tbody>
</table>
Main matters raised by readers, authors and editors

Our survey revealed the following opinions regarding Russian science journals:

1. Most respondents (65%) considered these journals do not yet have a reputation, while 35% thought that these journals were not highly regarded.
2. Respondents did not always trust the information, thought the articles were of low quality and thought that journal design was poor.
3. The main content of journals should be new knowledge: respondents were equally divided in their preference for theoretical and practical topics.
4. The driver of a journal’s reputation is considered to be the quality of its scientific articles. The Journal Impact Factor, founding body and social responsibility are judged as secondary factors.

Options to improve the reputation of Russian journals

1. Better editorial management
2. Emphasis on professional credentials of the authors, not on academic degrees and titles.
3. More attention to the readers’ needs.
4. Publish more new information, with a balance between theoretical and practical.

Opportunities of science editing in cooperation with EASE

Science journals are facing challenging times, in Russia as well as elsewhere. Publishers and editors constantly search for new and effective directions of development. In line with this, the Russian chapter of EASE was founded in 2012. This was due to the enthusiasm of the editors of several Russian journals, namely *Journal of Economy and Entrepreneurship*, *Journal of International Scientific Researches* and *Journal of Reputiology*. The current secretary of the Russian chapter is Dr. Sergey V Gorin, Chief Editor of the *Journal of Economy and Entrepreneurship*.

The chapter’s agenda is:
- to facilitate interaction amongst science editors in Russia,
- to arrange annual regional conferences and thematic meetings for editors in Russia,
- to promote the use of the EASE Guidelines and Science Editors’ Handbook for editors, thereby raising the standards of science papers and journals in Russia.

References

4. Burtsev AG. Domestic architectural journals prospects for the inclusion to foreign abstracting and indexing services. *Journal of Reputiology* 2012; 5 (3-4): 74-78. [in Russian]

*H index is calculated using data from the SEL (e-library) database in the last five years (2007-2011).
Cascading peer review for open-access publishing

Edward F. Barroga
Department of International Medical Communications, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; eb@dimc-tmu.jp

Abstract Over the years, there has been a strategic transition from subscription-based to open-access publishing. This transition has driven some changes in peer review, including cascading peer review. The latter apparently avoids rejections. This article analyses cascading peer review for open-access publishing and focuses on its potential impact on authors, reviewers, editors, publishers, and learned societies.

Keywords Cascading peer review; science editing; learned society; open access.

Introduction
The scientific merit of scholarly articles is assessed through peer review. Constructive criticism from peer reviewers serves as a basis for editorial appraisal of research quality and the suitability of articles for publication.

Although peer review is imperfect and lacks strong supportive evidence, it preserves the integrity and quality of scholarly communication. The quality of peer review determines the journals' chances of being indexed in prestigious abstract and citation-tracking databases.

Over the years, there has been a strategic move from subscription-based to open-access publishing, which has driven some changes and innovations in peer review. The latest of these innovations is cascading peer review, which apparently avoids rejections.

This article analyses traditional peer review and its format in the era of open-access publishing, with a focus on cascading peer review and its potential impact on all stakeholders of scholarly publishing.

Traditional peer review for subscription-based publishing
Traditional peer review usually includes three levels: in-house assessment by journal editors, evaluation by external peer reviewers, and final checks by the chief editor. Journal submissions undergo rigorous internal and external analysis before acceptance. Initial editorial appraisal allows low-quality submissions to be rejected outright and facilitates accurate external review.

Despite its strengths, this scheme is costly, inconsistent, biased, dependent on the reviewers’ qualifications, and the publishing capacities of the journal. In fact, the quality of peer review is subjected to the reviewers' professional background and knowledge of publishing ethics and research reporting. Consequently, the main efforts in the field are directed towards providing comprehensive guidelines and arranging educational courses for reviewers and upgrading the reviewer selection criteria.

Peer review for open-access publishing
Open-access publishing enables free and rapid access by readers to research data, provides global visibility of scholarly papers, and reduces publication costs. In the digitization era, open access facilitates archiving and indexing by most bibliographical databases and digital libraries. Nonetheless, some experts believe that open access lacks sustainability due to financial incentives for journals to publish more articles with processed payments, high article processing charges, exploitation of the author-pays model, uncertainties with waiving publication charges, and reduced revenues from subscriptions.

Open peer review, minimal re-review, post-publication peer review, and cascading peer review have been introduced in order to address transparency, consistency, cost, and the speed of open-access publishing. Opening the whole process of peer review to the public makes it transparent. This innovation however increases costs and slows production.

Post-publication review gives the readers an opportunity to filter and appraise the articles. Although it may overcome some problems of traditional peer review, it can create 'scientific chaos' in data presentation and interpretation.

Cascading peer review
Cascading peer review is a model that avoids final rejection by redirecting peer-reviewed papers, which are rejected by one journal, to another more suitable publication. This model has the potential of reducing expenses and time for repetitive evaluation of journal submissions. Due to the perception of unfair recycling of scholarly manuscripts, the cascading can affect the prestige of some journals.

The cascading is usually the transfer of articles rejected by top-tier journals to lower-tier or spin-off journals within the publisher's portfolio. Alternative mechanisms are an automated manuscript transfer (articles are re-directed via a link from the manuscript editor), a peer review consortium (rejected articles are re-directed to journals within a consortium), and a “soft” cascading approach (offering more suitable publication venues).

The acceptance criteria of journals adopting this model within the publishers' portfolio vary widely, descending from tough to soft. The acceptance criteria may relate to the novelty, methodology and interest to a wider readership.

Cascading peer review can reduce expenses for manuscript re-appraisals and promote low-tier journals. Authors however may refuse to consider their manuscripts in the low-tier publication outlets. After all, rigorous peer review may not be achieved and soft editing and reviewing practices may be encouraged for lower-tier journals with low acceptance thresholds.
Implications of cascading peer review

Authors
As a result of cascading peer review and re-directing manuscripts, authors may lose interest in publishing in high-profile journals and agree to having their article published anywhere. Journals that ensure publication may be favoured by authors regardless of the quality and suitability of the manuscripts. This approach will diminish the value of scientific research, hamper production of high-quality data, and create unethical shortcuts for those opting for rapid publication of flawed and redundant papers.

Peer reviewers
The efforts of peer reviewers are not wasted as the same reviews are used within the publisher's portfolio of journals. Cascading peer review may however negatively affect the reviewers' roles by replacing their gate-keeping functions with the role of controlling manuscript transfer from one publication venue to another.

With reviewers as traffic controllers instead of quality evaluators, the whole system of peer review may lose its scientific prestige. The urge to financially maintain the cascade of the publisher's journals may eventually result in the loss of editorial independence and conflict coming from the publisher's influence on the peer review process.

Editors
Editors should carefully weigh the merits of high-quality papers deserving publication in top-tier journals against accepting redundant and low-quality work in their cascade of journals. The traditional gate-keeping role should be complemented by the proper functioning of the whole cascade. The editors' decision to accept, revise, reject, or cascade a journal submission will therefore reflect their appraisal competency.

A broad review of articles may be adopted from an economic sustainability viewpoint. This will reduce the importance of careful internal editorial review and rejection crucial in subscription-based publishing. Editors may downplay their role in the editorial review in terms of quality assessment to market their cascade journals and increase the latter's acceptability to the science community as alternate repositories.

For cascade journals, the editor's criteria for article acceptance become less stringent with lower-choice journals. This process is in contrast to a careful appraisal based on a correct study design, accurate data interpretation, and the novelty of findings in leading journals with no cascading options. Low-quality articles with slim chances of passing the editorial review can accumulate and distract editors who need to make decisions on re-directing and processing all submission components.

Publishers
Large, but not small publishers, are favoured by the new system. Publishers that offer multiple alternatives for authors particularly benefit from cascading peer review. Re-directing saves time, reduces rejection rates, and avoids wasting of peer reviewers' efforts. However, publishers may be tempted to condone low-quality research that is unworthy of scientific investigation in return for an article that can be published in their cascade of journals.

Although cascading peer review eases access to content, the online production and dissemination of content are still expensive. Publishers must establish a revenue-generating mechanism to financially sustain their cascade of journals. Publishers with very low acceptance rates may lose from cascading peer review since most of their processing time and costs is centered on rejecting articles instead of re-directing them.

Predatory publishers may especially benefit from the new system which will allow them to accept and publish rapidly papers rejected elsewhere. This effect will diminish the value of and destroy peer review.

Learned societies
Learned societies moving their journals to open-access publishing and adopting cascading peer review will inevitably need to find new sources of income to replenish the lost revenues from journal subscriptions. This may entail increases in membership dues or activity fees. Educational or training activities for both members and non-members may also suffer.

A logical solution to the problem lies in temporarily retaining subscription access with traditional peer review while switching to open-access publishing with cascading peer review. Additional publishing guidelines and educational materials for reviewers are also effective alternatives.

References
6 The pros and cons of open access. Available at: http://www.nature.com/nature/focus/accessdebate/34.html (accessed 8 August 2013). Also see the 389. doi: 10.3325/cmj.2012.53.386.
8 Davis P. Cascading peer-review — the future of open access? Available at: http://scholarlykitchen.ssnet.org/2010/10/12/cascading-peer-review-future-of-open-access/ (accessed 8 August 2013).
10 Davis P. Should open access journals charge submission fees? Available at: http://scholarlykitchen.ssnet.org/2010/12/09/open-access-submission-fees/ (accessed 8 August 2013).
Common statistical mistakes in manuscripts submitted to biomedical journals

Farrokh Habibzadeh
President, World Association of Medical Editors (WAME); Editor in Chief and Founder, The International Journal of Occupational and Environmental Medicine; Director, NIOC Health Organization Medical Education and Research Center, Shiraz, Iran; Farrokh.Habibzadeh@theijoem.com

Introduction
Statistical methods have rapidly developed over the past decades and become instrumental in data analysis of research articles, so that currently most journals ask the authors to describe in detail the statistical methods used for the analysis of their data in a separate section in the methodology. This is helpful, as it allows the internal validity of the findings presented in the article to be examined. In this review, based on more than 20 years of experience as an editor and reviewer, I will describe the most common mistakes I have encountered in manuscripts submitted to biomedical journals. I found these mistakes with more or less similar frequency in the submissions to both prestigious and small medical journals. Many of these mistakes can also be found in published articles, which means even some editors are not aware of these points.

Distribution of data
Many of the submitted manuscripts involve analysis of continuous variables like age, blood pH, and serum cholesterol level. One of the common mistakes is to treat all such variables similarly. They are presented by many authors as mean and standard deviation (SD) and compared by parametric tests like Student’s t test. However, one of the most basic steps in the analysis of these data is to determine if these variables are normally distributed or not. Only normally distributed variables should be presented as mean and SD; non-normally distributed variables should be presented as median and interquartile range (IQR)—the distance between the 25th and 75th percentiles. Parametric tests (for example, Student’s t test and one-way analysis of variance [ANOVA]) should only be used for the analysis of normally distributed variables, as normality of the distribution is one of the basic assumptions made by these tests and violation of which would lead to incorrect results. Variables that do not have a normal distribution should be compared with non-parametric (or distribution-free) tests such as Mann-Whitney U test and Kruskal-Wallis. But, how should we test if a variable has normal distribution? The one-sample Kolmogorov-Smirnov test is one of the most popular (non-parametric) statistical tests that can be used. However, as a useful rule of thumb (without access to the raw data, which is very useful for reviewers and editors), if the SD exceeds half of the mean value, then it is unlikely that the distribution of the variable is normal.

SD vs SEM
Another common mistake in submitted manuscripts (even also in published articles) is using the standard error of the mean (SEM) instead of SD to indicate dispersion of the data. SEM is always smaller than the SD, as it is SD divided by the square root of the sample size. Some authors, inappropriately, use SEM instead of SD to imply that their measurements were less dispersed. SEM is in fact the SD of the distribution of the mean, it therefore measures the precision the mean.

Assume that you measure fasting glucose in 225 healthy men and find a mean glucose level of 90 mg/dL with an SD of 15 mg/dL. Assume that the variable has a normal distribution, thus, almost 95% of the study sample (214 = 0.95×225 people) are expected to have a blood glucose between 60 (90 – 2×15) mg/dL and 120 (90 + 2×15) mg/dL (according to the characteristics of the normal distribution, that is, in a normal distribution, 95% of data are within the interval mean±2×SD). Assume that the sample was representative of the population. Then, we can state that 95% of people in the studied population have a blood glucose level between 60 and 120 mg/dL. That is of course helpful. But, suppose that our researcher studied 900 people instead of 225 and came to the same mean (90 mg/dL) and SD (15 mg/dL). What will have changed? Our statements would be exactly the same as before. Here again, based on the results obtained, we can state that 95% of people in the studied population have a blood glucose concentration between 60 and 120 mg/dL. The only difference, as most of you intuitively felt, is that when you study 900 people, the results are more precise than those obtained when you study 225 people.

Suppose that we try to do the research with 225 people 100 times; that is to take samples of 225 people 100 times, to measure their blood glucose. Then, we will have 100 means (and 100 SDs). Of course these 100 means will not be exactly equal and distributed around a number—“mean of means.” This “mean of means” is the closest possible value to the true population mean. To examine the level of dispersion of these 100 means around their “mean of means,” we can calculate their SD. It can be proved that SEM is a good estimation for this SD. Fortunately, for the derivation of this SD, we do not need to run the experiment 100 times and we can simply calculate it from the SD derived in one experiment (here 15 mg/dL). As mentioned earlier, SEM for the 225-participant study is:

\[
SEM = \frac{SD}{\sqrt{n}} = \frac{15}{\sqrt{225}} = \frac{15}{15} = 1mg/dL
\]

For the 900-participant study, the SEM is:

\[
SEM = \frac{SD}{\sqrt{n}} = \frac{15}{\sqrt{900}} = \frac{15}{30} = 0.5mg/dL
\]

Regardless of the distribution of the variable in the sample, the distribution of the means is usually normal, thus, considering the characteristics of the normal distribution, 95% of all possible values of the mean are within almost 2×SEM around the mean value. In other words, this interval is the 95% confidence interval (95% CI) of the mean. It means that in our examples, for the 225-participant study, with a probability of 95%, the real mean of the population would be between 98 (100 – 2×15) mg/dL and 102 (100 + 2×15) mg/dL.
the 95% CI for the mean for the 900-participant study is 99 to 101 mg/dL. It is now clear that the 95% CI for the mean for 900 participants (2 = 101–99 mg/dL) is half of that for 225 participants (4 = 102–98 mg/dL)—the measurements of the mean were twice as precise in the 900-participant study compared to those made in the 225-participant study. It simply shows that to get double the precision we should quadruple (2) the sample size (900=4 × 225).

SEM is in fact not a measure of dispersion of the studied variable. It is a measure indicating how precise the mean value is.1,3 In scientific writing, when we want to present a measure of data dispersion, we should use SD, whereas to present how precise a mean value is measured we should present SEM. The standard error is not specific for the mean and we can calculate it as well for other statistics like odds ratio (OR), relative risk, and percentages (for example, prevalence and incidence rate). And that is why these statistics are usually reported along with their 95% CIs.2 Do not forget that 95% CI and standard error are closely correlated and one can simply be calculated from the other. However, we usually report 95% CI rather than the standard error. The standard error, however, may be used as error bars in graphs to present the accuracy of the measurement.

Inappropriate precision in reporting statistics

The precision with which we report statistics should depend on the precision of our measurement. For example, in a research study on adults, we usually record age in years as generally measuring age more precisely has no implication clinically. In the same study, however, we may measure blood pH with two or even three digits after the decimal point, as minute changes in blood pH are associated with serious clinical implications. Statistical software programmes, however, often calculate the results with a predefined precision, say three digits after the decimal place, no matter how precisely the raw data were measured. Therefore, unless rectified, software programmes report the mean of both of the above-mentioned variables, age and blood pH, with three digits after the decimal point. In submitted manuscripts, it is not uncommon to read statements like “the mean age of patients was 37.351 years.” When reporting an age in one-thousandth of a year (almost 9 hours), it means that we asked participants about the hour they were born! While, we usually only ask them about their birth year. The above mean should probably be reported as ‘37’ or ‘37.4’ years with no more precision. There are no consensus on the number of digits to be reported in presenting the mean and SD. While it can be shown mathematically that the mean and SD should be reported with the accuracy used in the measurement of the raw data, some authorities believe that they should be reported with one extra digit.4,5

A similar argument is true for percentages. The prevalence of fever in the statement “of 35 participants, 12 (34.29%) had fever” should have been written as ‘34.4%’. When increasing or decreasing one participant of 35 participants changes the percentage by almost 3%, talking about 0.29% is not reasonable. Therefore, as a rule of thumb, when the number of total participants (the denominator) is equal to or less than 100 (or, when the value of percentage [here, 34.29] exceeds the number of participants [here, 12]), we should not report any number after the decimal place. When the number of participants is equal to or less than 20, it is better not to report percentage at all, as it may be misleading.5 Furthermore, it is better to report the 95% CI of the percentage, particularly if that is the primary outcome. Therefore, the above statement should be presented as, “of 35 participants, 12 (34%; 95% CI: 18–51%) had fever.” From another perspective, when considering the width of the 95% CI, reporting the prevalence with a higher precision sounds unreasonable.

Reporting p values

In some manuscripts, authors reported p values as p<0.05, p<0.01 or p=NS. Many authorities believe that it is better to report the exact value of the p value like p=0.023, p=0.647. Previously, p values were read from statistical tables and therefore, determination of their exact value was difficult. However, currently, statistical software programs report the exact value of p. Sometimes, when the p value is very small, say 0.00001, the software that by default reports the value as ‘0.000’ and the authors incorrectly report the value as p=0.000 or worse p<0.000. The p value is a probability and thus can vary from a minimum of zero to maximum of one. If the value is either one or zero, the event will happen (or not happen) for sure. In experimental research, however, we can never be sure and thus, we are practically facing p values that are more than (not equal to) zero and less than (not equal to) one. Therefore, if a software reports a p value as 0.000, the correct presentation would be p<0.001. As a p value is a probability, it can never be negative and thus it can never be presented as p<0.000. In reporting p values, it is not necessary to report more than three digits after the decimal point. Some journals may ask you to also report the statistical test used, like Pearson χ^2=1.796, df=3; p=0.62.

95% confidence interval vs p value

Sometimes, manuscripts present both p value and 95% CI as statistics. For example, we may see statements like “smoking was significantly (p=0.04) associated with a higher incidence of lung cancer (OR=2.6; 95% CI: 1.3–5.2).” A p value can only indicate the probability of observing the difference by chance, when there is really no such difference in the population (type I error); it does not provide any information on the amount of the change—the so-called effect size. On the other hand, 95% CI not only tells us the effect size, but also if the difference is statistically significant (for example for OR, the difference is significant if the 95% CI does not contain 1). For the above example, the 95% CI of OR (1.3–5.2) indicates that with a probability of 95%, the risk is not less than 1.3 and is not more than 5.2 times that for non-smokers, hence, the effect size; since the 95% CI does not contain 1, it reflects that smoking has a significant effect on the incidence of lung cancer. Therefore, it is not necessary to mention both p value and 95% CI; the latter is sufficient and the statement could instead be written as “smoking was associated with a higher incidence of lung cancer (OR=2.6; 95% CI: 1.3–5.2).”
Sometimes the situation is worse; the p value contradicts the 95% CI. The statement "(OR=3.1; 95% CI: 0.97–9.91; p<0.05)" has internal inconsistency! While p is significant, the 95% CI for OR contains 1, which is impossible. Other impossible statements would be "(OR=4.3; 95% CI: 1.12–16.51; p=0.06)," where the p value is not significant but the 95% CI does not contain 1. These errors are more common in the tables of submitted (and published) manuscripts. The general trend in the use of p value vs 95% CI is to use the latter.

Calculation of the minimum sample size

In many trial reports, the number of people studied is stated but the necessary information to calculate the minimum sample size is not presented. For example, in prevalence studies, the authors usually do not provide the expected frequency of the disease and the acceptable error in the calculation of the prevalence; or in clinical trials, the authors usually fail to provide the minimum change important to them (of clinical importance), the effect size, and the expected SD in the variable. In this way, it is impossible to calculate the minimum sample size.3

These problems usually arise from failure to describe the study hypothesis in enough detail. For example, in many submitted manuscripts, you may read "our hypothesis is that drug X is better than drug Y for reduction of low-back pain." Whereas, a better hypothesis would be "compared to drug Y, drug X can reduce, by at least 20%, the pain score of women with mechanical low-back pain, as measured by the visual analog scale," where the study population (women with mechanical low-back pain), the outcome (drop in pain score), measurement (by visual analog scale), and the expected effect size (20%) are described.

Sometimes, we receive studies that are descriptive in nature, say studies on the prevalence of malaria in a region. In such studies, since there is generally no hypothesis, no statistical tests are necessary. Some authors, however, try to decorate such manuscripts with inappropriate use of statistical tests and p values. Another example of inappropriate use of statistical tests is when we examine all members of the population rather than a sample.

Yet another problem that is closely correlated with inappropriate sample size is the issue of distinguishing "clinical significance" from "statistical significance." Sometimes, we read manuscripts that found a statistically difference that is not clinically significant. For example, we read "the mean serum cholesterol level in the study group (189 mg/dL) was significantly (p=0.031) higher than that in the control group (187 mg/dL)." This difference, though statistically significant, is not of any clinical importance and was probably the result of the higher-than-necessary sample size studied. That is why the difference of clinical importance is considered in the calculation of the minimum sample size. Recruiting more people than necessary may result in the observation of differences that, though statistically significant, have no clinical significance. Apart from being unethical, study participants fewer than the minimum sample size may result in type II errors.3

Another reason why we may come to statistically significant results without a real difference existing in the population (type I error), is multiple comparisons made in the data analysis.3 For example if we want to compare the means of five groups by comparing every two groups by Student’s t test, we need to run 10 tests. Even if there is no real difference between the five studied groups, with a probability of almost 40%, we will come to a statistically significant p value. This issue will be resolved either by using the appropriate test (eg one-way ANOVA) or by correcting the cutoff value for p for multiple comparisons (say, by the use of Bonferroni’s correction).

Non-significant p values

In submitted manuscripts, sometimes we encounter statements like "fasting blood sugar levels in men (97.3 mg/dL) were higher than in women (90.1 mg/dL), however, the difference was marginally significant (p=0.057)." The cutoff value of 0.05 (the probability of 1 in 20) was chosen arbitrarily by Fisher to distinguish "significant" from “non-significant” differences. There is in fact no logical rationale behind the selection of ’0.05’ for the cutoff value. However, when we choose the cutoff value of 0.05 (which is very common in biomedical sciences), we can no longer talk about "marginally significant," "partially significant," or …—a difference is either significant (p<0.05) or not. In the discussion of manuscripts, we sometime encounter statements like “…the difference was however not statistically significant (p=0.057). If we had recruited more people the difference might become significant." I believe this is not acceptable, as the authors presumably calculated the minimum sample size of their study and recruited the necessary participants.

If a p value is non-significant, it may be due either to the fact that there is really no difference in the population, or the study failed to pick up the real difference that existed in the population (type II error). Therefore, a non-significant p value cannot simply be interpreted as “no difference” in the population. Instead, the authors reviewers should perform a power analysis to determine the study power and see whether the study is able to detect the difference if there were really a difference in the population.3 If the minimum sample size was determined correctly, then we can be confident that the study power is also correct.

Conclusion

Submitted manuscripts and even some published articles contain statistical mistakes in the data analysis and presentation. Having a good command of statistics would help editors, reviewers and authors to better evaluate a study. This review touches on some of the most frequent mistakes; however, each of these mistakes should be examined in more detail.

References

Quantifying the work of copy editors

Yateendra Joshi
Cactus Communications, 510 Shalimar Morya Park, off Link Road, Andheri (West), Mumbai 400 053, India
yateendra.joshi@gmail.com

Abstract Copy editors typically work on word-processor files, which track changes made to the text. They also query the authors through comments in the text. At present there is no automated way to quantify the copy editing, and the amount of work is typically assessed by word count of the original document or the time spent by the copy editor. These are poor substitutes, and do not really measure what has been done to the manuscript. This article proposes some approaches to quantifying a range of corrections made by copy editors.

Keywords Copy editing; editorial changes; manuscript editing

Introduction Nearly all journal submissions require editing, although the extent of the editing varies across manuscripts and journals. Van Buren and Buehler elaborate nine levels of edit, with substantive editing representing the highest level, which the University of Chicago Press describes as dealing with ‘the organization and presentation of content.’ Copy editing, on the other hand, is concerned with the exact words in which subject matter is couched, including spelling, grammar, punctuation, style, and usage. Most editing services typically copy-edit the manuscripts, and publishers encourage authors – especially non-native English speakers – to have their manuscripts copy-edited and even refer to agencies that offer such services.

For authors, a simple criterion to judge the value of copy editing is the outcome of their submission: if the paper is accepted for publication or if the reviewers make no comment on language or grammar, the copy editing is considered worthwhile. It is important not only to judge whether the job has been done adequately but also to know how much work was put into copy editing. Just as the individual h index serves as a tool for assessing researchers’ performance without looking into the contents of their papers, those who supervise copy editors need an approach to measure the amount of editing without examining the copy-edited manuscript line by line.

The present article discusses some approaches to quantifying a range of corrections made by copy editors.

A copy-edited manuscript is usually dotted with many small changes and queries to the author but it will seldom show text shifted even within a paragraph. Substantive editing, on the other hand, will be visible by directions to move blocks of text, large-scale deletions and additions, and queries to the author about the logic and organization of text. Schultz provides a simple diagram, referred to as the writing/editing funnel, in which organization and paragraphs represent the top of the funnel and words, punctuation, grammar, etc. represent the narrow end—copy editing focuses on the narrow end.

Indirect ways of quantifying copy editing

At present, copy editing services charge their customers based on the number of words in the manuscript, time spent on editing, or a flat fee quoted after a preliminary assessment of the manuscript. Word count has the merit that the customers know exactly how much the service is going to cost them. Some editors or editing services charge on the basis of number of pages. However, a page is generally specified as 250 words, which means the charges are essentially based on the word count.

Some editors charge an hourly fee and keep track of the time spent on each manuscript. Although this approach ensures that the copy editor is adequately compensated for manuscripts that require heavy copy editing, the customers cannot know the exact fees.

The level of editing is also specified, ranging from light to heavy editing, and the service is charged for accordingly. None of these methods, however, can take into account the extent of changes made by the copy editor. Fewer changes do not necessarily mean inadequate editing though: a manuscript may be well written; its authors may have scrupulously followed the journal’s instructions to authors; and stylistic inconsistencies may have been eliminated by using a software package. It is also possible that heavy editing has added little value, most of the changes being the editor’s pet peeves or stylistic preferences.

More direct ways of quantifying copy editing

Whereas the indirect ways mentioned above attempt to predict the amount of editing a given manuscript is likely to require, the more direct ways involve comparing the original and the copy edited versions by means that are largely automated; it is not necessary to actually read the copy edited version.

Word count

A competent copy editor eliminates verbiage; it follows, therefore, that the copy edited version is shorter than the original, and it is possible to quantify this: open a copy of the revised version; accept all changes; remove embedded comments or queries; and compare the word count of this copy with that of the original.

Readability statistics

Microsoft Word, for example, can calculate the readability statistics of a given file, and comparing these statistics for the original and the edited versions can show whether the editing has contributed to making the text more readable.

Vocabulary

Competent copy editors, particularly those familiar with the subject of the manuscript, often use the right words or technical terms where authors may have used less precise
Categorizing the changes made to a manuscript

Ideally we need a method that can compile a detailed profile of a copy-editing job just as chemical analysis of a sample of liquid, for example, supplies its profile: the elements that make up the compound and the quantity of each, the pH, turbidity, and so on.

Wates and Campbell\(^6\) compared the original, that is as submitted, and the published versions of 189 papers from 23 journals and found that citations and references was the single largest category of changes (42.7%) made to the manuscripts. Boettger\(^3\) categorized the errors that copy editors were required to spot in 41 such tests used by different agencies. Of the 20 categories, spellings made up the largest category (found in about 75% of the tests), followed by inappropriate or missing capitalization (about 65%) and missing comma with a non-restrictive element (65%). Such errors are typically the kind of errors that copy editing is expected to eliminate.

One of the earliest studies on categorizing the changes made by copy editors is that by Portugal and Forscher,\(^6\) who grouped the defects that copy editors corrected into four broad areas, namely nomenclature, spelling, punctuation, and construction (subject–verb agreement, tense, etc.) and found “remarkable degree of uniformity among the editors who [had] similar training but different levels of editing experience.” A longer list of categories of the changes made to manuscripts is shown in Table 1.

Quantifying copy editing

It is only by quantifying at least some items in the list given in Table 1 that we can approach the task of quantifying copy editing. To my mind, macros offer the key: it should be possible to automate the counting of one or more categories of the changes listed here. For example, multiple changes within a sequence of, say, 20 consecutive words probably imply a re-write; if the bulk of the changes are only those involving spelling, capitalization, and formatting, the job can be categorized as a light edit; if the changes predominantly involve prepositions and articles, the author is probably a non-native speaker.

I believe that such a task should not be unduly difficult for those who are well versed in macros and for the developers of style and grammar checkers. In fact, the process of developing such macros or similar utilities may even contribute to refining style and grammar checkers. Secondly, just as dictionaries are now increasingly corpus-based, data from large-scale analyses of errors fixed by copy editors can contribute to corpus-based style manuals. Lastly, just as the h index, citation counts, and other similar measures offer the tools to evaluate individual researchers’ performance, quantifying copy editing can pave the way for correctly crediting copy editors’ efforts.

Note The essay is based on a presentation by the author at the 11th International Conference of EASE, Tallinn, June 2012.

References

Table 1 Categories of changes made to manuscripts in copy editing

<table>
<thead>
<tr>
<th>Character</th>
<th>Spelling</th>
<th>Capitalization</th>
<th>Spacing</th>
<th>Symbols</th>
<th>Fonts</th>
<th>Consistency</th>
<th>Punctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Homophones</td>
<td>Sense-related</td>
<td>Prepositions</td>
<td>Articles</td>
<td>Tenses</td>
<td>Tautology</td>
<td></td>
</tr>
<tr>
<td>Phrase</td>
<td>Idiomatic usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentence</td>
<td>Re-writing</td>
<td>Deleting superfluous words</td>
<td>Readability</td>
<td>Active/passive</td>
<td>De-nominalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citations and references</td>
<td>Format (capitalization, italics, boldface, etc.)</td>
<td>Sequence of elements</td>
<td>Punctuation</td>
<td>Omissions</td>
<td>Extraneous entries</td>
<td>Mismatches</td>
<td></td>
</tr>
<tr>
<td>Housekeeping</td>
<td>Tables</td>
<td>Figures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formatting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to better achieve integrity in science publishing

Jaime A. Teixeira da Silva
Freelance science writer and consultant, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
jaimetex@yahoo.com

Abstract There are clear cases of editor and reviewer bias in the biomedical sciences, which may indicate that not all is well within biomedical science publishing. Consequently, serious reflection and reform is required. Such cases are probably not systemic, and represent the exception rather than the norm. In addition, scientific fraud among scientists is increasing, or perhaps the ability to detect fraud has improved. At the other extreme of the spectrum, there are serious cases of gross negligence of the academic editorial and peer review process by several new and even established open access and traditional print journals. In biomedical journals where there already exist a fair peer review and respect for publishing ethics, three possible ways to achieve positive reform and to reduce possible editor and peer bias, are through: 1) anonymous or blind peer review, 2) open pre-publication peer review, or 3) post-publication peer review (PPPR). PPPR is an excellent way to publically expose weaknesses or gaps in the peer review process by an author, editor or publisher. Greater accountability and transparency, which is lacking in some of the key players in biomedical science publishing, is also required.

Keywords Accountability; bias; open access; post-publication peer review

The world of biomedical science has taken quite a revolutionary turn in the past decade. With the strengthening of the open access (OA) movement, the number of OA articles and journals has been consistently increasing. This paper focuses on the biomedical sciences and why there is an urgent need to address some key issues to ensure scientific integrity in publishing and publishing integrity in science. The pre-publication editorial and peer review system, in which the authors generally suggest peer reviewers for their manuscript, or in which one or more members of the editorial board seek suitable peer reviewers from among the global peer pool, is based on three premises: a) there is no bias in the choice of peer reviewer; b) the peer reviewers are competent and will examine the scientific quality of a manuscript with rigour; c) the journal (= editor, board and publisher) will conduct a fair and balanced assessment of all peer reviewers’ comments to then either recommend acceptance, revision or rejection. Issues such as plagiarism or misconduct would serve as additional factors that would lead to a rejection. Bias in the scientific methodology, in the peer review and editorial process, journal selection or the thematic focus is not uncommon. Cognizance of these problems would then spur the evolution of new journals with refreshing editorial boards. Doing the right thing and punishing – by firing – incompetent or fraudulent editors still remains rare and is a form of justice and adoption of scientific integrity that can usually only be achieved and implemented by the publisher.

Publishing an academic paper is the end result of efforts in the research laboratory for most biomedical scientists. In that process, the authors, peer reviewers, editors and publishers all share a responsibility to ensure the fidelity of the peer review process and the integrity of the academic record. Despite the existence of author ethical guidelines, an explosion in the number of retractions in the biomedical sciences indicates that not all is well with the peer review and the publishing process. Moreover, numbers reported in such papers are probably a gross underestimate of the real fraud and problems that exist in biomedical publishing. Statistical data in the Fang et al paper point towards most retractions being a result of research misconduct (fraud, suspected fraud, duplicate publication, and plagiarism). However, in many cases, errors in the scientific content, plagiarism or other verifiable errors – had the peer review process been sufficiently rigorous – escaped the eye of reviewers or editors. This points to an even more sinister and serious problem: the lack of adequate quality control by editors, journals and/or publishers. Compounded by multiple cases of a complete lack of respect for publishing ethics and the rule of basic publishing principles at the other extreme of the publishing spectrum, for example as displayed by Nigerian-based academic journals or Indian-based IDOSI, both OA publishers that have purely cosmetic publishing ethics pages, the biomedical community is left in a complex situation. Predatory publishing has the potential to destroy the scientific integrity of the OA movement since it promulgates false, manipulated or fraudulent science. Furthermore, when unscholarly papers from such predatory journals are included in the reference lists of both valid – that is, where true peer review has taken place – and invalid academic journals, the need for a quantitative system to clarify the level of predation being practiced by a publisher is required.

Since the sources of the problems are so diverse, multinational and multicultural, the solutions are even more complex. However, one basic premise for a peer reviewed journal that is well referenced and has thus obtained an impact factor (IF), is that the peer review process is sound. Yet, the IF is used by publishers to attract more scientists who, in several countries, then use the IF to obtain research funds that are calculated on the basis of the IF score, for example in India, China and Iran. One cycle of manipulation begins here. Journals that are not practicing peer review, or that are fomenting scientific fraud by publishing papers with fake data, plagiarism or other unscholarly practices, but who have clearly obtained their IF unfairly, need to be carefully scrutinized, and where unscholarly behaviour has been proved, need to be punished. Even though this case for the need for greater transparency and justice was made to Thomson Reuters, the parent company of the IF, requests fell on deaf ears. Is then Thomson Reuters also not partially
responsible for problems in biomedical science publishing by avoiding critique, evading queries, and demonstrating a lack of transparency.10 Similarly, the ISSN, which provides a form of validity to predatory journals and publishers when national libraries issue ISSN codes to such journals, should be held partly accountable.11 To avoid misuse of the IF by scientists and editors, a more balanced approach to using the IF should be made, for example the Global Science Score12, since the IF is in fact only a measure of how often a paper is referenced, and not necessarily a measure of the quality of a journal or publisher.

There are three possible routes to achieve positive reform and to eliminate editor and peer bias, through: 1) anonymous or blind peer review, 2) open pre-publication peer review, or 3) post-publication peer review.13 PPPR is one way of enforcing quality by exposing weaknesses, manipulation or fraud committed by authors, pseudo-peer reviewers, editors and/or publishers, forcing accountability by these entities. With PPPR, integrity might return, but only when a critical, public, OA form of the evidence is made available.14

Competing interests
The author declares no conflicts of interest, financial or other. The author was the Editor-in-Chief of all Global Science Books (GSB) journals from 2007 until June, 2013, including that of the journal where opinion pieces in the reference list were published (ie, The Asian and Australasian Journal of Plant Science and Biotechnology) and was also GSB’s founder. The position held at GSB was purely voluntary, without financial remuneration or any other tangible benefits. The author was also at the Faculty of Agriculture, Kagawa University under various positions between 1997 and 2013, where he retired at the end of March, 2013. The author currently holds no teaching or editorial position, and is not affiliated with any publisher, journal or academic institute and is now an independent, free-lance science writer and consultant.

References
3 Sen CK. Commitment to intellectual honesty and personal responsibility (editorial). Antioxidants and Redox Signaling 2012;16(7):635. doi: 10.1089/ars.2012.4519
6 Fang FC, Steen RG, Casadevall A. Misconduct accounts for the majority of retracted scientific publications. Proceedings of the National Academy of Sciences USA 2012;109(42):17028–17033. doi: 10.1073/pnas.1212247109
11 Teixeira da Silva JA. The ISSN: critical questions that scientists should be asking. The Asian and Australasian Journal of Plant Science and Biotechnology 2013;7(Special Issue 1):76–80.
On the current presentation of scientific papers: 5. Verbs and tenses

Denys Wheatley
Editor in Chief, Cell Biology International; Cell Biology International Reports; Cancer Cell International; Oncology News; Chairman and Director, BioMedES; Leggat, Keithhall, Inverurie, Aberdeen AB51 0LX, UK; 3232dnwd@gmail.com

“Proper words in proper places makes the true definition of style.”

Jonathan Swift

Choosing the right words and putting them in the correct order can be difficult, even for native English speakers. For this reason non-native English speakers often have to use editorial services to improve the presentation of their papers. A paper submitted by someone with a masterly touch (style) in English has a far greater chance of being accepted at peer review.

The verb is particularly important, never more so than in scientific writing, because of the prime requisite - to be precise. Unfortunately for non-native speakers, English is full of words that connote (slightly) different meanings, whereas other languages have far fewer alternatives. If there is one verb that is grossly overused today it is “to evaluate”; it is not so much incorrect as inappropriate to use without considering more apposite verbs. Far better words can be found, one excellent alternative that has lost favour being “to measure”. Others include: to assess, examine, explore, investigate, and determine. Some verbs commonly used in papers have connotations in English that are simply irksome, euphemisms such as “to sacrifice” instead of to kill or slaughter (since no altar is used!). Cells are harvested from cultures; to exhibit/demonstrate/display means to show; to observe invariably displaces to see, to find, and to notice; to perform has replaced to do (no stage in sight!); to decrease has become “to cause a decrease in”, much as “to lead to an elevation in” means “to raise”. These are just a few examples of the use of inappropriate verbs in the majority of today’s articles.

Word order and the verb

The verb is usually the most important word in a sentence because it intimates action. The subject and the object provide the context between which the right verb has to be chosen. Unlike some other languages (eg German), English sentences are best constructed with the verb up front. A heap of subordinate clauses before the verb is frustrating, particularly when used in sentence after sentence — Sir Ernest Gowers in Plain Words' writes “the reader is kept waiting an unconscionable time for the verb”. Scientific writing unfortunately tends to have too many qualifications (ie conditional subclauses) before reaching the verb, weakening the impact of the message being communicated. Take an extreme case where a verb all alone conveys its message immediately - “Jump”!

Tense

Tense is a problem for most writers, not just non-native English speakers. Tense is an odd word that etymologically comes not from “ten” as its stem, but “temp”, indicating time (past, present, or future). The complex tenses found in the English language are particularly confusing for foreign speakers. Consider “he had a bald head” (past) and compare it with “he had had a bald head” (past perfect)! Most scientific articles are written in the past tense, reporting what was or has been done. An occasional paper tries to use the present tense throughout, but sounds like a recipe (we do this, and next we do…). Difficulty arises because the present tense is needed in some instances in a paper, and authors, reviewers and editors should constantly be aware of this problem. As a quick example consider “we investigated whether X was proportional to Y”, which should be “we investigated whether X is proportional to Y”. Either X is proportional to Y or it is not. Figure legends often take a different tense from the text. “Z was located in the nucleus” is fine in the text, but in a legend pointing to the site of Z, it can be seen that it “is in the nucleus”. Likewise the Discussion uses both the past and present tenses, often changing within a sentence. While “we found our results confirmed the hypothesis of Jones and Li (2010)” is acceptable; “…our results confirm the hypothesis” is better because the hypothesis is extant. [One particularly annoying phrase widely used today is “to further confirm”; no matter how many ways you confirm something, each is a confirmation, not a further confirmation.]

Active or passive

The active verb is now being used with the personal pronoun. “We evaluated” is perhaps the most commonly used opening in scientific papers; this leads to us being annoyingly reiterated — we examined this… and then we recorded that… Reiterative use occurs when authors cannot easily manage the passive tense, which can relieve the monotony of the personal pronoun; we carried out a survey becomes a survey was carried out.

Some smaller issues

Finally, I will mention a few other problems with verbs. Split infinitives are no longer a no-no, and have become common place. Sometimes they sound wrong, in which case change the word order, eg “to leave the room quietly” is better than “to quietly leave the room”. Repeating verbs can also be irksome: “the suspension was centrifuged and the pellet was retained” flows better as “the suspension was centrifuged and the pellet retained”. Verbs ending in “ise” have mostly become “ize”. Scientific writing unfortunately tends to have too many qualifications (ie conditional subclauses) before reaching the verb, weakening the impact of the message being communicated. Take an extreme case where a verb all alone conveys its message immediately - “Jump”!

Tense

Tense is a problem for most writers, not just non-native English speakers. Tense is an odd word that etymologically comes not from “ten” as its stem, but “temp”, indicating time (past, present, or future). The complex tenses found in the English language are particularly confusing for foreign speakers. Consider “he had a bald head” (past) and compare it with “he had had a bald head” (past perfect)! Most scientific articles are written in the past tense, reporting what was or has been done. An occasional paper tries to use the present tense throughout, but sounds like a recipe (we do this, and next we do…). Difficulty arises because the present tense is needed in some instances in a paper, and authors, reviewers and editors should constantly be aware of this problem. As a quick example consider “we investigated whether X was proportional to Y”, which should be “we investigated whether X is proportional to Y”. Either X is proportional to Y or it is not. Figure legends often take a different tense from the text. “Z was located in the nucleus” is fine in the text, but in a legend pointing to the site of Z, it can be seen that it “is in the nucleus”. Likewise the Discussion uses both the past and present tenses, often changing within a sentence. While “we found our results confirmed the hypothesis of Jones and Li (2010)” is acceptable; “…our results confirm the hypothesis” is better because the hypothesis is extant. [One particularly annoying phrase widely used today is “to further confirm”; no matter how many ways you confirm something, each is a confirmation, not a further confirmation.]

Active or passive

The active verb is now being used with the personal pronoun. “We evaluated” is perhaps the most commonly used opening in scientific papers; this leads to us being annoyingly reiterated — we examined this… and then we recorded that… Reiterative use occurs when authors cannot easily manage the passive tense, which can relieve the monotony of the personal pronoun; we carried out a survey becomes a survey was carried out.

Some smaller issues

Finally, I will mention a few other problems with verbs. Split infinitives are no longer a no-no, and have become common place. Sometimes they sound wrong, in which case change the word order, eg “to leave the room quietly” is better than “to quietly leave the room”. Repeating verbs can also be irksome: “the suspension was centrifuged and the pellet was retained” flows better as “the suspension was centrifuged and the pellet retained”. Verbs ending in “ise” have mostly become “ize”. Scientific writing unfortunately tends to have too many qualifications (ie conditional subclauses) before reaching the verb, weakening the impact of the message being communicated. Take an extreme case where a verb all alone conveys its message immediately - “Jump”!

Tense

Tense is a problem for most writers, not just non-native English speakers. Tense is an odd word that etymologically comes not from “ten” as its stem, but “temp”, indicating time (past, present, or future). The complex tenses found in the English language are particularly confusing for foreign speakers. Consider “he had a bald head” (past) and compare it with “he had had a bald head” (past perfect)! Most scientific articles are written in the past tense, reporting what was or has been done. An occasional paper tries to use the present tense throughout, but sounds like a recipe (we do this, and next we do…). Difficulty arises because the present tense is needed in some instances in a paper, and authors, reviewers and editors should constantly be aware of this problem. As a quick example consider “we investigated whether X was proportional to Y”, which should be “we investigated whether X is proportional to Y”. Either X is proportional to Y or it is not. Figure legends often take a different tense from the text. “Z was located in the nucleus” is fine in the text, but in a legend pointing to the site of Z, it can be seen that it “is in the nucleus”. Likewise the Discussion uses both the past and present tenses, often changing within a sentence. While “we found our results confirmed the hypothesis of Jones and Li (2010)” is acceptable; “…our results confirm the hypothesis” is better because the hypothesis is extant. [One particularly annoying phrase widely used today is “to further confirm”; no matter how many ways you confirm something, each is a confirmation, not a further confirmation.]

Active or passive

The active verb is now being used with the personal pronoun. “We evaluated” is perhaps the most commonly used opening in scientific papers; this leads to us being annoyingly reiterated — we examined this… and then we recorded that… Reiterative use occurs when authors cannot easily manage the passive tense, which can relieve the monotony of the personal pronoun; we carried out a survey becomes a survey was carried out.

Some smaller issues

Finally, I will mention a few other problems with verbs. Split infinitives are no longer a no-no, and have become common place. Sometimes they sound wrong, in which case change the word order, eg “to leave the room quietly” is better than “to quietly leave the room”. Repeating verbs can also be irksome: “the suspension was centrifuged and the pellet was retained” flows better as “the suspension was centrifuged and the pellet retained”. Verbs ending in “ise” have mostly become “ize”. Scientific writing unfortunately tends to have too many qualifications (ie conditional subclauses) before reaching the verb, weakening the impact of the message being communicated. Take an extreme case where a verb all alone conveys its message immediately - “Jump”!

References

Reports of meetings

The Asia Pacific Association of Medical Journal Editors (APAME 2013) Convention

Tokyo, 2 – 4 August, 2013

A brief history

The APAME is the result of important activities of the World Health Organization (WHO). In 2006, the WHO Regional Office for the Western Pacific developed and launched the Western Pacific Regional Index Medicus (WPRIM) with the mission of sharing and exchanging health knowledge in the Region as one part of an important project to establish a virtual Global Health Library (GHL). The first WPRIM meeting was held in Beijing in December 2006, where a recommendation was made to establish associations of medical journal editors in all countries of the Region, with the mission to improve journal publishing quality. The Korean Association of Medical Journal Editors (KAMJE) was founded as early as 1996, followed by the Japanese Association of Medical Journal Editors (JAMJE) in 2008, then associations in Mongolia, Singapore, the Philippines and Malaysia (founded in 2008, 2010, 2011 and 2011, respectively).

The idea to establish a regional hub for editorial activities occurred in 2007 at a meeting of WPRIM, and APAME was formally established the following year (both these meetings were held in Seoul, Republic of Korea) to enable contact and collaboration among editors, reviewers, librarians and publishers of scientific journals. APAME obtained its constitution and officers, and began its remarkable activities aimed at access to quality health information in the Region. Close collaboration with the Regional Office of WHO resulted in launching a platform for WPRIM (2010).

APAME activities soon expanded, and at the convention in 2012 (held in Kuala Lumpur, Malaysia), editors, reviewers, librarians and publishers of scientific journals in the South-East Asia Region (with 11 member states) were invited to join the group of 37 countries of the Western Pacific Region. APAME holds its annual conventions at different locations in the Region. An online digital archive and reference-linking platform for medical journal articles was launched in September 2012 as APAMED Central (http://apamedcentral.org), equivalent to PubMed Central in the USA.

APAME’s mission is to contribute to the improvement of health in the Asia Pacific Region by ensuring the quality of health-related information published in medical journals that should help in better decision-making and effective delivery of health services.

The 2013 Convention

The first day was devoted to the WPRIM/APAME General Assembly, and APAME meeting for West Pacific Region and South East Pacific Region delegates. They discussed reports from the Journal Selection Committee, Education Committee, and a draft of the Tokyo Declaration on Research Integrity and Ethical Publication in Science and Medicine in the Asia Pacific Region, which was prepared for publication and signed by all participants.

Several projects were mentioned, such as the Institute of Medical Information at the Chinese Academy of Medical Sciences, which also collaborates with WHO information resources. In 2012, WHO launched the Institutional Repository for Information Sharing, which enables multilingual access to the complete collection of WHO publications over 60 years. In collaboration with HINARI (Research4Life), libraries are being created and interconnected, including with WPRIM. Of special interest are original papers about public health. Among future steps will be the development of the IRIS platform, the creation of offline libraries for Pacific Islands, and continuing support to WPRIM. The WHO is organizing writing workshops as well as standardizing materials for courses (training the trainers, training the editors and reviewers).

Countries in the region have their specific needs, for example, Sri Lanka has 17 medical journals but no umbrella expert committee, while Myanmar with 3 medical journals that are “regularly irregular” in publication needs to enhance editorial skills and training workshops for editors. Similar needs are felt in Bangladesh and India.

The information systems are improving, for example the WPRIM database is growing quickly, from about 412,000 items in December 2012 to more than 634,000 in July 2013. There is a need to complete the selection criteria for inclusion of journals as well as to prepare guidelines for suspension of journals from the list.

The programme for all attendees began on 3 August. It was an APAME/JAMJE joint session, opened by Professor Kyoshi Kitamura, the President of APAME and Chair of the Organizing Committee of JAMJE. He explained the aims of the convention, “to promote collaboration among editors, authors, researchers, librarians and publishers of academic medical journals and, to upgrade the quality of scholarly publications in medicine and health sciences in the Asia Pacific Region.”

The first plenary lecture was on Science, Communication and Integrity in the Third Millenium (E. Baranyiová), seeking links between the goals, achievements, but also failures in medicine on the one hand, and pressures experienced by scientists that might result in various types of unethical behaviour with far-reaching consequences in the area of public health and the social sphere. Several approaches to remedy the situation were presented.
Session 1 covered “Clinical trial registry and responsible conduct of research in view of universal health care”, from the Philippines, the Republic of Korea, Japan. The speakers were: Merlita Opeña, Hyun-Young Park, Kiichiro Tsutani, Masayuki Saijo and Iekuni Ichikawa. A new stage in the history of both Pacific regions was mentioned, with local projects presented, such as the Health Research and Development Information Network database (www.herdin.ph), launched in 2012, the national health research repository of the Philippines with 50 000 citations and bibliographic information from both published and unpublished (research projects, reports, theses and dissertations) materials. The Korean Clinical Trial Registration System (CRIS) is financially supported by the government; 20% of its use is from abroad. The Japanese UMIN-Clinical Trial Registry was launched in 2005 and now includes 11 378 items). Unintended use of research results and responsibility of editorial boards in connection with safety and biosecurity clearance was another topic. E-learning of research ethics was presented as important in view of growing research misconduct, also in the Pacific region, alluding to the most recent case of the retraction of a paper reporting on a Novartis drug. Mention was made of the Collaborative Institutional Training Initiative (CITI) based at the University of Miami, Florida, USA., but available worldwide. Its mission is “To promote the public’s trust in the research enterprise by providing high quality, peer reviewed, web based, research education materials to enhance the integrity and professionalism of investigators and staff conducting research.” Interestingly, when searching the website (http://www.citiprogram.org), one finds the CITI Programmes in Canada, India, Japan, Korea, and USA - but not Europe.

There was a short seminar on the Creative Commons License (Takako Sota), a non-profit organization with the mission to promote the development of culture by allowing free use of work, while respecting the intentions of the authors.

The following two sessions were devoted to COPE (speakers Chris Graf, Hitoshi Nakagama, Tetsuya Tanimoto, Jeong-Wook Seo, Atsushi Manabe, Jeong-Ho Kim, Chong-Woo Bae). The importance of COPE, established in 1997, was shown, with its growing number of members (now around 8 500) in many disciplines. Several case reports followed, and it was stated that technology in detecting misconduct is useful only with human surveillance. Authors should not doubt the power of technology to detect plagiarism. Case studies from Pediatrics International show 33% submissions from Japan, 24% from Turkey, 13% from Europe, and 7% from the Republic of Korea; when the journal rejects manuscripts for attempted duplicate publication, the authors are banned for 3 years. There was a discussion about a global blacklist of such authors. In the Republic of Korea, 177 medical journals are published, and a total of 228 covering other sciences. PubMed covers only 73 and Scopus 71 of them. Early detection of plagiarism saves the time of editors. It was reported that using the logo of CrossCheck proved useful in reducing the numbers of plagiarized articles. KAMJE has shown a proactive approach to publication problems in that it organized a campaign to reduce duplicate/plagiarized manuscripts: the proportion decreased from 5.93% in 2004 to 1.19% in 2009.

Plenary lecture 2 (Kiyoshi Kitamura) presented some world trends in medical education, contacts among doctors and patients, quality of care as reflected in the definition of standards by the World Federation of Medical Education, accreditation, databases etc. Medical education and its trilogy (basic, post-graduate and continuing) in the context of medical writing and ethics education were mentioned, along with current reforms of the system in Japan. There was a parallel session on Open Access (speakers Jeong-Wook Seo, D. Khan, M.W. Partow, and others) analysing its different styles, its impact on scholarly publishing and future directions. E-libraries and E-journals were discussed in another parallel session, as was promotion of medical journals in different countries.

The last day saw several reports on editorial/reporting guidelines and peer review (speakers Jennie Greaney, Eric Healy, John Arokiasamy, Wilfred Peh, Sung-Tae Hong, Anita Jain, Tao Dai, J.F. Lapeña), regional training, practical issues on how to target a relevant journal, transparency of the publication process, etc. The usefulness of the free Equator Network was stressed with various available guidelines. Peer review problems in China were mentioned, due to inadequate technological support, inadequate peer experts, poor communication among editors and reviewers, and lack of review standards. A proposal was made for sharing reviewers among APAME countries.

The poster session had 16 posters, showing the current status of medical publishing in Cambodia, Lao PDR and Mongolia. Several individual journals (from Singapore, the Republic of Korea, the Philippines) were presented. One realizes that only a fraction of knowledge accumulated in this dynamic region of the world is known and acknowledged in worldwide science databases. The paramount role of the WHO and its regional offices in closing the information gap among various regions of the world was noticeable during the entire Convention. There were more than 250 participants from 17 countries, most of them journal editors of 81 Japanese medical societies, also representatives of the WHO regional offices, Biomed Central, Medknow Publications and Wiley.

The chance to participate at the APAME meeting was an excellent experience for me. The enthusiasm that could be felt at this Convention is a valuable asset that will help us all to address some negative developments in science publishing that have become more prevalent in recent years. There is a good chance for EASE to be involved with APAME, extend our collaboration, and produce a real network of contacts useful for all.

This event has shown that problems in biomedical sciences are similar around the globe, but in this region the developments in the field of science information are rapid, profound and dynamic. They are a real challenge for Europe.

Eva Baranyiová
EASE Vice President
Professor, Czech University of Life Sciences, Prague
Editor, Agricultura Tropica et Subtropica
ebaranyi@seznam.cz
24th Annual Congress of the Society for Editors and Proofreaders

Exeter, UK, 31 August – 1 September, 2013

The University of Exeter’s sprawling Streatham campus (UK) was host to the 24th Annual Congress of the Society for Editors and Proofreaders (SfEP) from 31 August to 1 September 2013. In keeping with its theme “Editing at the Crossroads”, the conference addressed the evolving nature of the publishing landscape and how copyeditors can stay up to date.

Saturday saw a number of events planned for those who arrived early, including a pre-conference course (“Efficient Copy-Editing” by Rosemary Roberts), a visit to Exeter Cathedral Library and Archives, a guided tour of the Cathedral, and finally the Exhibitors/Marketplace slot.

The conference officially kicked off on Sunday with SfEP Honorary Vice-President David Crystal, OBE, returning for the keynote speech, “The English Language Copy-Editor’s Guide to Britain.” Dipping into his latest book, *Wordsmiths and Warriors: The English-Language Tourist’s Guide to Britain*, Mr. Crystal shared fascinating insights into the chronology of the English language, by taking participants through places associated with invasions, writers, reformers and poets and the influences that shaped the language as we know it today.

Participants then launched straight into one of the 24 workshops and seminars that were to be held in parallel sessions across the next two days. The first session I attended was on rewriting and substantive editing, led by writing and editorial consultant Andrew Steeds. Mr. Steeds advocated the three Cs (clarity, coherence, consistency) but suggested that an optimal approach to substantive editing would help editors remain efficient while enabling them to edit in a manner that does not obscure the author’s voice.

The next session I attended was Nancy Duin and Anna Sharman’s workshop titled “From Doing to Advising: Moving into Editorial Consultancy.” Both industry veterans, the co-presenters distinguished between the freelancing professional and the consultant (“a freelancer measures his or her worth in terms of price per page, whereas time is the currency of a consultant”). In the end, they shared valuable tips for jumping on the roadmap to consultancy by peppering the discussion with personal anecdotes. Running concurrently was Julia Sandford-Cooke’s session, “Social Media for Editors,” providing a basic orientation on how to use the Internet as a marketing tool and to optimize business.

My final seminar for the day was with Martin Delahunty from the Nature Publishing Group, titled “Open Science and Future Trends in Digital Journals,” which was by far the most relevant to professionals in STM publishing. Mr. Delahunty took us, almost without stopping for breath, through brain-tingling statistics on the research output and trending topics in digital publishing – the scientific paper trial, ORCID, under-reporting of negative findings, making clinical trial data available, open access, extended journal reach, post-publication peer review, Altmetrics – phew! His concluding remarks on how these developments will impact scientific publishing and copyeditors (“published research articles will become organic and evolve relative to user interaction and open peer review”) left the audience with plenty of food for thought.

Once the day’s sessions were done, all the delegates reconvened in the evening for the annual gala dinner and dance, which featured an exclusive once-a-year performance by the SfEP choir, the Linnets, and a witty after-dinner talk by Michael Jecks, British author of historical mystery novels. On day 2, I waited eagerly in the front row of a packed auditorium for this year’s Whitcombe Lecture to be delivered by Carol Fisher Saller, famed author of *The Subversive Copyeditor* and editor of the *Chicago Manual of Style Online’s* Q&A. Ms. Saller’s key message to copyeditors was an encouraging, bolstering one: in the context of changing publishing technologies, copyeditors should take these changes in their stride and adapt themselves, by partnering with other authors, societies, and publishing professionals; developing end-to-end services for authors; and educating themselves about using social media effectively.

Among the final day’s sessions, I attended Dr. Joy Burrough-Boenisch’s workshop on “Editing Non-native English”; she taught simple techniques to identify and address characteristics of non-native writing. Having a great deal of experience with editing scientific manuscripts by authors of Asian origin, I was curious to see how one would teach this subject, but I wasn’t really expecting to learn anything new. Yet, I was impressed by the breadth and quality of Dr. Burrough-Boenisch’s recommendations. One tip I cannot wait to use was to “back-translate” (on dictionary.reverso.net) an unclear expression to check alternative usage and vocabulary in the original language before translating it back into English. Finally, from a host of the “Something for Everyone” workshops, I attended the Editing PDFs using PDF stamps, which I thought was an interesting take on annotation. From the sessions I didn’t have the opportunity to attend, there were several targeted at early career editors and writers as well as those which aimed to teach new skills: “How to succeed as a freelancer,” “Finance for freelancers,” “Medical writing: A practical introduction,” and “InDesign essentials,” to name a few.

For many, the SfEP conference is an annual outing – an opportunity to take a welcome break from deadlines and the rigors of editing projects, to meet old colleagues and make new ones, to learn new skills and get in touch with developments, and fit in a little time for socializing. As an academic editor and trainer, I felt that the meeting certainly lived up to its promise of providing participants with opportunities for developing new skills, networking and widening horizons. The informative sessions and enthusiastic discussions, not to mention the magnificent views of Exeter’s hills, made for a memorable weekend, and I look forward to next year’s meeting at the Royal Holloway, University of London.

Charlotte Baptista
Manager, Skill & Knowledge, Cactus Communications, Mumbai, India
charlotteb@cactusglobal.com
Twelfth Annual General Meeting

Blankenberge, Belgium, 23 September

The Annual General Meeting of the company was held on 23rd September at Hotel Aazaert, Blankenberge, Belgium. The President reported on activities during the preceding year, starting with the successful conference held at the Tallinn University of Technology, with special thanks to Mare-Anne Laane. EASE collaborated with several other organisations during the conference, including the International Society of Addiction Journal Editors, the International Association of Veterinary Editors and Mediterranean Editors and Translators. The International Society for Managing and Technical Editors (ISMTE) organized one of the parallel sessions. This led to an invitation to EASE to collaborate with ISMTE in their annual European meeting in 2013. Chris Sterken played the lead role for EASE, including all arrangements with the Hotel Aazaert in Blankenberge, Belgium, which proved an excellent venue.

The Publications Committee has been restructured and renamed the Editorial Board for European Science Editing. Manuella Walker has joined the Board. The Editorial Board have appointed an International Advisory Board with eight members who will serve an initial three-year term.

Sylwia Ufnalska has continued to develop the EASE Guidelines for Authors and Translators, producing a publication ethics checklist, which was presented as a poster at the 3rd World Conference on Research Integrity in Montreal in May 2013.

The Regional Chapters programme has started, with chapters in Russia, led by Sergey Gorin, in Croatia, led by Ana Marusic, and an Italian chapter is being formed led by Paola de Castro. Each chapter is self-supporting, with its own page on the EASE website to present information on local activities.

A Gender Policy Committee has been formed, led by Shirin Heidari. Their aim is to create common standards and policies to ensure that the work of both genders is given equal recognition.

Our collaboration with sTANDEM (Standardising English for Medical Purposes) continues. Sera Tort, on behalf of EASE, has created a list of 4000 medical journals in Europe. sTANDEM will use this database to encourage the editors to sit a short test and gain a certificate to say that they have attained a certain level of writing ability.

EASE has become a member of HIFA2015: A Global Campaign in Health Care for all by 2015. Its mission of improving healthcare by providing healthcare information in easy to understand language agrees with EASE’s goal of improving science communication. EASE has also entered an informal collaboration with the EQUATOR Network, which promotes good reporting of health research studies.

Paola de Castro represented EASE on training events at the University Sapienza Rome, Catania in Sicily and EnteCRA (Research in Agriculture) in Rome (the latter organized by John Wiley & Sons), as well as speaking at the annual conference of AMERBAC (Mexican Association of Biomedical Journal Editors). Joan Marsh and Paola de Castro attended a meeting of the Bioresources Impact Factor Group in Rome in June 2013.

The 12th General Assembly and Conference will be held in 2014. It was decided to build on the success of the Tallinn meeting and hold another in two years rather than the traditional three. Two submissions were received to host the 2014 Conference. Izet Masic offered to host the meeting in Sarajevo, Bosnia & Herzegovina and Ana Marusic offered various facilities in Split, Croatia. The proposals were of a high standard, but Split was deemed to have a slight advantage. The conference will be held on 13-15 June 2014 at the School of Medicine of the University of Split, and we are very grateful to the University authorities for allowing this. Ana will be the official chair of the local organizing committee, aided by Professor Wigan. Dalibora Behmen will be on the local organizing committee with responsibility for logistics.

Joan Marsh
president@ease.org.uk
My congratulations to the Esteve Foundation and to the two coordinators of Notebook 24, Ana Marusic and Harvey Marcovitch. This compilation of six guidelines and fifteen major articles on the subject of competing interests in biomedical publication is a great idea. Competing interests are too often misunderstood both by journal editors and by authors of scientific papers. Guidelines and articles clearly show that competing interests are primarily financial, and that other conflicts of other types are probably underestimated. Although non-financial competing interests exist they are less extensively studied than those involving profit. I have quoted an example of a non-financial competing interest from a PLOS Medicine paper (September 2008, volume 5) reproduced in this notebook: “Imagine you’re an editor and you receive a paper from the scientist who supervised your postdoctoral fellowship. It’s been a couple of years since you left this lab, but he has supported your career and you have warm feelings toward him; plus you still join your former lab mates occasionally at their monthly pub night. You select sympathetic reviewers and you fight hard for the paper at the editorial meeting”.

This compilation shows the interest of scientific societies and editors in this theme, but does not tell us what authors and reviewers - major players in the publication system - think. We have few data on these topics: Do authors understand what they have to declare? Do authors under-disclose? Do reviewers declare their competing interests to editors? What are the implications and influences of disclosures on the publication system? There are studies showing that declaring interests could reduce the credibility of a manuscript! We lack evidence to confirm or invalidate our opinions; more research is needed – at present authors do not seem to know what to disclose, and editors, apart from those of a small number of prestigious international journals, rarely declare their competing interests.

The information contained in this notebook is comprehensive: the guidelines are consistent between the American and European scientific societies, and the ICMJE statement pattern is a good example. It seems that English language publications are more concerned about non-disclosure, but this is mostly due to the lack of dissemination of guidelines to non-English-speaking cultures; few translations have been done, and they seem unimportant for authors, editors and reviewers. The 2003 chapter “Conflict of interest” that I wrote for the EASE Science Editors’ Handbook will be radically updated for the forthcoming 2013 edition. Unfortunately, I am not convinced that transparency, reporting competing interests, and disclosures improve the situation and prevent misconduct: loyalty is key!

On the Esteve website, the presentation is good: “The publication is intended as a useful tool for readers, authors and editors of scientific journals, and for those who are interested in preserving the integrity of scientific knowledge. A collection of a wide range of resources for combating bad practices in biomedical publication, the book addresses conflict of interest as a factor that may have a significant adverse effect on the field of research. And although findings of malpractice are less serious than the falsification or fabrication of data, cumulatively their damage on [sic] scientific knowledge can be greater than that of the most notorious cases.”

Notebook 24 can be downloaded (chapter by chapter, except three chapters for copyright reasons, although two of these can be downloaded from other sources) from the Esteve Foundation website: http://www.esteve.org/aw/Home/Secciones_Web/Publicaciones/Cuadernos/~flc/competing/. Alternatively, the Foundation will mail a free copy to you within a few days on request.
It is nice to see forum participants being addressed as EASErs, hopefully forum discussions do ease the task of scientific editing.

Less formatting work for authors

Joan Marsh, our president, passed a discussion to the forum that had started on EASE’s LinkedIn. Pippa Smart had asked for views about Elsevier’s initiative to relax formatting requirements for manuscripts on submission. An article by Kelvin Davies, an editor who publishes with Elsevier, states the minimum requirements: manuscripts must be in the IMRAD format, the figures of sufficient quality, and the text legible. Provided all the usual information is included, the references do not have to comply with the journal style. Elsevier will format the references on acceptance. Davies points out that the increasing demands made of authors has led to style and formatting taking on a life of their own, and strict requirements imposed by some journals before they will review are only of little help to reviewers.

Elsevier has been piloting the scheme, giving journals the opportunity to take up the option, since mid-2012. Angela Turner, whose journal is published by Elsevier, had been told the company was planning to allow each journal to select its preference from a small panel of reference styles. The publisher will then convert the references in accepted manuscripts into that style. She hoped authors would realize that references still need to be complete and up to date for the peer review stage. Interestingly, she added that she could guess from the formatting where the manuscript had been submitted beforehand.

The discussion on LinkedIn stressed the amount of time authors have to spend formatting an article for the specific style of the journal, which could, as Karen Shashok also pointed out on the forum, be done as part of the revision once an article had been accepted. On the journal side, the LinkedIn discussants thought consistency in a paper made the reviewing process easier for the reviewers and editor, and enhanced the chances of acceptance and quicker publication. Davies on the other hand, indicated that publication would be quicker with the new scheme. Kelvin Davies, an editor who publishes with Elsevier, states the minimum requirements: manuscripts must be in the IMRAD format, the figures of sufficient quality, and the text legible. Provided all the usual information is included, the references do not have to comply with the journal style. Elsevier will format the references on acceptance. Davies points out that the increasing demands made of authors has led to style and formatting taking on a life of their own, and strict requirements imposed by some journals before they will review are only of little help to reviewers.

The discussion on LinkedIn stressed the amount of time authors have to spend formatting an article for the specific style of the journal, which could, as Karen Shashok also pointed out on the forum, be done as part of the revision once an article had been accepted. On the journal side, the LinkedIn discussants thought consistency in a paper made the reviewing process easier for the reviewers and editor, and enhanced the chances of acceptance and quicker publication. Davies on the other hand, indicated that publication would be quicker with the new scheme. Kelvin Davies, an editor who publishes with Elsevier, states the minimum requirements: manuscripts must be in the IMRAD format, the figures of sufficient quality, and the text legible. Provided all the usual information is included, the references do not have to comply with the journal style. Elsevier will format the references on acceptance. Davies points out that the increasing demands made of authors has led to style and formatting taking on a life of their own, and strict requirements imposed by some journals before they will review are only of little help to reviewers.

The discussion on LinkedIn stressed the amount of time authors have to spend formatting an article for the specific style of the journal, which could, as Karen Shashok also pointed out on the forum, be done as part of the revision once an article had been accepted. On the journal side, the LinkedIn discussants thought consistency in a paper made the reviewing process easier for the reviewers and editor, and enhanced the chances of acceptance and quicker publication. Davies on the other hand, indicated that publication would be quicker with the new scheme. Kelvin Davies, an editor who publishes with Elsevier, states the minimum requirements: manuscripts must be in the IMRAD format, the figures of sufficient quality, and the text legible. Provided all the usual information is included, the references do not have to comply with the journal style. Elsevier will format the references on acceptance. Davies points out that the increasing demands made of authors has led to style and formatting taking on a life of their own, and strict requirements imposed by some journals before they will review are only of little help to reviewers.

The discussion on LinkedIn stressed the amount of time authors have to spend formatting an article for the specific style of the journal, which could, as Karen Shashok also pointed out on the forum, be done as part of the revision once an article had been accepted. On the journal side, the LinkedIn discussants thought consistency in a paper made the reviewing process easier for the reviewers and editor, and enhanced the chances of acceptance and quicker publication. Davies on the other hand, indicated that publication would be quicker with the new scheme. Kelvin Davies, an editor who publishes with Elsevier, states the minimum requirements: manuscripts must be in the IMRAD format, the figures of sufficient quality, and the text legible. Provided all the usual information is included, the references do not have to comply with the journal style. Elsevier will format the references on acceptance. Davies points out that the increasing demands made of authors has led to style and formatting taking on a life of their own, and strict requirements imposed by some journals before they will review are only of little help to reviewers.

The discussion on LinkedIn stressed the amount of time authors have to spend formatting an article for the specific style of the journal, which could, as Karen Shashok also pointed out on the forum, be done as part of the revision once an article had been accepted. On the journal side, the LinkedIn discussants thought consistency in a paper made the reviewing process easier for the reviewers and editor, and enhanced the chances of acceptance and quicker publication. Davies on the other hand, indicated that publication would be quicker with the new scheme. Kelvin Davies, an editor who publishes with Elsevier, states the minimum requirements: manuscripts must be in the IMRAD format, the figures of sufficient quality, and the text legible. Provided all the usual information is included, the references do not have to comply with the journal style. Elsevier will format the references on acceptance. Davies points out that the increasing demands made of authors has led to style and formatting taking on a life of their own, and strict requirements imposed by some journals before they will review are only of little help to reviewers.
explained, more precision is vital where reference to parts of text is important, for example to find out how phrasing of a controversial issue changes over time and who influences whom. Quote marks are used in the text but they needed to be pinpointed in the citation to the original text. Liz Wager also wondered how – when all books are read on Kindle – different e-readers would give the same e-locations. Papers in Angela’s discipline of ethnology and animal research often had quotes and she did not relish the disappearance of page numbers. She conceded that text on Kindle could be searched, readers tend to highlight text and she thought a search-based quote system would be required in future. Mary Ellen made a plea that a place-marking system be set up before publishers abandon page numbers entirely because we are in a stage of transition and not all readers can be expected to search yet.

Chris Sterken launched his e-journal in 1994. The journal has no page numbers but an article-numbering scheme of volume (year of publication) and article numbers (sequential paper 1, paper 2 etc.). Thus, paper 2 in (2013) volume 19 would be labelled 19_2. Each paper is searchable inside its own pdf. This system has been applied by other journals as well.

Will was disappointed by the “wistful” forum support for retaining page numbers and felt he had not been given any solutions. The importance of fine-grained citing had not been appreciated. In his field, researchers might cite a specific location as the source of an idea, rather than as a direct quotation of text. He still did not know how to reference such a citation. His only option would be to include a clearly identifiable sentence or phrase to avoid the reader’s spending time trying to find the specific location where the idea is presented and possibly making an erroneous guess, which to him seemed clumsy and to be a retrograde step. Mary Ellen agreed that the importance probably eluded the “science” editor forum community, but she had a sinking feeling that the lack of interest was rooted in readers’ accepting authors’ contentsions rather than checking the text in the reference works to make sure that it really supports the claims made.

Another adjective for naughty authors

Liz Wager, editing a handbook on systematic reviews, asked for suggestions for a non-judgemental adjective to describe scientists who intend to commit misconduct or commit it unintentionally. She had thought about ‘naughty’. Norman Grossblatt and Karen suggested that describing the action rather than the protagonist is less pejorative. For example, “not good” could be described in a separate sentence as “not good”. Alternatively, to avoid using any adjective the behaviour for ‘unscrupulous’ as suggested by Marian Everett Kent. Having considered the various suggestions, Liz plumped for ‘unscrupulous’ as suggested by Marian Everett Kent. Alternatively, to avoid using any adjective the behaviour could be described in a separate sentence as “not good”.

The fourth authorship criterion

Sylwia Ufnalska posted the text of the criterion for authorship which has recently been added to the ICMJE’s requirements for authorship: “Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved”. She thought it hard for authors to be sure that their coauthors were not responsible for any misconduct and they should not be expected to do so. The third criterion that all authors approve the manuscript made it clear that they were responsible for the content. Another addition requiring authors to be able to identify which coauthors were responsible for each part of the work was, however, to be welcomed. Valerie Matarese considered the wording difficult to understand by people whose English proficiency is limited. Of more concern was its impracticality, as authors could not be expected to stand for the integrity of the whole work and accept accountability for all the authors, some of whom in large studies they might never have met. Junior researchers who do the bulk of the work could be excluded whereas the proposal for several guarantors once proffered by Science would place responsibility on senior scientists. She added that as medical writers could not vouch for the integrity of all researchers, the new criterion removed any doubt that they could be authors. Paola De Castro’s view was that although unrealistic to expect authors to meet all four conditions, these conditions should all be considered by the research group when allocating authorship, and the criteria did make authors aware of their responsibilities.

Spacing before and after symbols

If searching the Internet fails, post your question on the EASE forum. Alice Lehtinen did this to find out the rules for spacing before/after symbols such as =, >, <, and *. Liz said there were no rules as different journals use different conventions. She recommended consulting the CSE Style Manual’s section ‘Mathematical operators and spacing’, adding that the AMA style manual recommends ‘thin spacing’ after these symbols, which may not be possible on regular word processing. Elisabeth Heseltine referred Alice to the SI (Système International) system, which stipulates use of a thin space on both sides of <, >, and *. She thought the same applied to ‘*’ representing a multiplication sign. Mary Ellen usually inserted such a space before the operator so that if the string comes at the end of a line the operator and variable stay together. She achieves this in Word by making a superscripted space (thinner).

Elise Langdon-Neuner (compiler)
a.a.neuner@gmail.com

Discussion initiators

Joan Marsh: president@ease.org.uk
Angela Turner: Angela.Turner@nottingham.ac.uk
Will Hughes: w.p.hughes@reading.ac.uk
Liz Wager: liz@sideview.demon.co.uk
Sylwia Ufnalska: sylwia.ufnalska@gmail.com
Alice Lehtinen: alice.lehtinen@ttl.fi

Erratum

In the August issue of ESE, names were incorrectly assigned in the Digest. In paragraph 3, for ‘Chris Sterken’ read Valerie Matarese, then for ‘himi’ read Chris Sterken. In paragraph 4, for ‘Chris’ read Valerie Matarese then for ‘Valerie’ read Liz Wager.
My Life as an Editor - Denys Wheatley

I read Biological Sciences at London University and moved on to the Institute of Cancer Research to do my doctorate. I immediately took a position in the University of Aberdeen Medical School at the invitation of Professor (later Sir) Alistair Currie, and developed an experimental pathology unit, largely devoted to cancer research. It has been my base ever since, but I have worked in cancer centres and medical schools throughout the world.

My recent essays on how to present a scientifically sound article in European Science Editing have come from providing a service to authors, especially those who are non-native English speakers. Hopefully, my recommendations will improve the authors’ chances of success with publishing in international journals.

I took over the editorship of Cell Biology International (CBI) in 1998, since the International Federation for Cell Biology’s (IFCB) policy was to have this official journal serve cell biologists worldwide. I started a ‘manuscript presentation service’ that became BioMedES Ltd. We now do translations into English and provide modules and courses on scientific writing and publishing worldwide (recently Latvia, Ukraine, Philippines, Brazil, UK and Hungary).

As an editor of several journals, I am often appalled at the poor presentation of articles from native English speakers, and also find that non-native speakers have copied many of their bad habits. Unless editors take some concerted action, the standard of papers, and especially their presentation, will continue to slide. Succinctness has given way to verbosity, redundant words and phrases, clichés, tautologies, blatant petty plagiarism, and more serious misdemeanours. We need a complete overhaul or rethink about how a scientific paper should be written and presented.

I started my career as an editor in the early 1960s when we had to create succinct abstracts (<45 words) of original articles for Biological Abstracts®. I helped Sam Franks in the early days (38 years ago) with Cell Biology International Reports, and learned most of my skills the hard way — by necessity.

I became editor of CBI shortly before I became Secretary General of IFCB; the President at the time was in a quandary with regard to the incumbent editor and needed someone to take over, and so he approached me. The journal was in a rut and it took three–four years to get it back on track. I hope that in the next year or two, I can pass on the office to someone else so that it can continue to thrive over the next 10–20 years. In the interim I started what was probably the first online journal published by BioMed Central (BMC) that had an independent editor, namely Cancer Cell International. This was followed a couple of years later by Theoretical Biology and Medical Modelling, also published by BMC, because I found theoretical papers – like scientific history papers – sent to journals at the time were taking between one and two years to be reviewed. The latest, six years ago, was an invitation to edit Oncology News by Patricia McDonnell, who had only a few months earlier started it.

Editorial responsibilities tend to take over your life, but in retirement it is an activity which nourishes the mind and keeps one busy. Having retired eight years ago, I simply hope I can remain active as long as possible, but by winding down the load to give me a decent lifestyle in my dotage. Since I have several other journals to keep going, I find my duties take up a lot of time. However, I seem to be able to work at a pace that allows me, with my assistants, to maintain them in good shape. I do get time to do some art and play a lot of music.

Journals are largely for researchers, but undergraduate students should read the original literature in their subjects more often, as expected of postgraduates. Unfortunately postgraduates seem to think that they have to focus all the time on their research project and fail to read more widely. Thus they are getting weaker at synthesising information from several fields and making the type of “lateral correlations” that allows the true discoverers in science and medicine to make quantum leaps forward. Education does not stop after graduate studies are over; it ends when life ends.

The most challenging task in the digital era of journal editing is to get people to write papers that are lucid, succinct, and straight to the point. If people knew more about how journals were produced 30–40 years ago, they would appreciate why it is wise to be succinct (the laborious task of composing text and making it ready for printing in a non-electronic era). Today, there is no limit to how long an online article should be. What the author forgets is that the attention span of the average reader is quite short; length can be a deterrent — succinct papers are what we need. ‘Cut and paste’ is another challenge – it’s too easy to indulge in (petty) plagiarism.

My association with the European Association of Science Editors (EASE) has come about only over the last three years. Clearly I should have been involved with such an organization many years ago. Professional organizations and meetings about editing are now of much value, especially with the aforementioned challenges that we need to recognize. We might go as far as to develop a new format regarding scientific publication because the present model results in papers being too stereotyped and reiterative, making many of them dull, boring, and uninteresting.

Denys Wheatley

Editor in Chief, Cell Biology International; Cell Biology International Reports; Cancer Cell International; Oncology News;
Chairman and Director, BioMedES
3232dnwd@gmail.com
ICMJE guidelines updated
The International Committee of Medical Journal Editors (ICMJE) has updated its "Uniform Requirements for Manuscripts Submitted to Biomedical Journals." The guidelines, last revised in 2010, have been largely rewritten and also renamed 'Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals” The main changes, summarised on the ICMJE website (www.icmje.org/new_recommendations.html), are the addition of a fourth criterion for authorship, more guidance on author accountability and contributorship, and a revised approach to conflicts of interest. The new recommendations also explicitly address publication bias and the use of reporting guidelines such as CONSORT.

Updated Declaration of Helsinki
The World Medical Association (www.wma.net) has updated its Declaration of Helsinki, which relates to ethical principles underpinning clinical trials and other research on humans. Two aspects are of particular relevance to editors. Firstly the Declaration now includes the requirement for study registration in a publically accessible database. Secondly, the Declaration states that “researchers, authors, sponsors, editors and publishers all have ethical obligations with regard to the publication and dissemination of the results of research,” and adds that “reports of research not in accordance with the principles of this Declaration should not be accepted for publication.”

Opening peer review
Several new initiatives have emerged in recent months offering a range of open peer review options for author and peer reviewers. The Winnower (thewinnower.com) is an "open access online science publishing platform that employs open post-publication peer review” Set up by a PhD student in the USA, The Winnower is set up as an alternative to journal publishing and offers a set fee of $100. In contrast, Libre (libreapp.org), run by Open Scholar (www.openscholar.org.uk), wants to work with journals, offering an "author-guided open peer review process” that can run parallel to the publication process. Authors are encouraged to submit papers at any point before, during or after publication. A third site, Publons (www.publons.com), looks at peer review from the other direction. It provides a reviewer-led forum whereby reviewers identify a paper they wish to comment on, upload a review, and obtain a DOI for their contributions once they are endorsed. Peer Evaluation (peerevaluation.org) is harder to define. It offers an open-access repository for all research content with an open peer review system. Under the tagline ‘empowering scholars’ it relies on peer networking and is entirely free to all users.

Peer Review Congress
The Seventh International Congress on Peer Review and Biomedical Publication took place in Chicago, USA, in September. The abstracts of the plenary sessions and the posters are all available from the congress website (www.peerreviewcongress.org) and provide a searchable goldmine of knowledge and current research on all aspects of biomedical editing and publishing. It’s impossible to cover everything in News Notes, but some of the hot topics were reproducibility (or lack of it), abuse of citations, the sheer amount of published research, spin, lack of disclosure of industry links, and of course access to clinical trial data. You can read summaries of the event on the Absolutely Maybe blog, hosted by Scientific American (blogs.scientificamerican.com/absolutely-maybe) and on the dedicated Peer Review Report blog (prprt.blogspot.co.uk)

BioMedCentral CCO Waiver for open data
BioMedCentral has introduced the Creative Commons CCO public domain waiver (creativecommons.org/publicdomain/zero/1.0) as part of its licence agreement. The CCO waiver will ensure that data components of articles will be clearly marked as available for sharing and re-use without legal restrictions. The waiver applies to data in all articles submitted to BioMedCentral or Chemistry Central journals from September 2013.

Better posters
Zen Faulkes, a biologist based in Texas, USA, maintains a popular blog called Better Posters (betterposters.blogspot.co.uk) that gives advice and critiques to anyone creating scientific posters. A recent post (3 October 2013) provides readers with a ‘Bad poster bingo’ to play at conferences, highlighting 25 common scientific, language and design flaws of poor posters. While the idea is fun and aimed at posters, it also serves as a handy watch-list for any kind of scientific article layout. Faulkes also highlights several journals or publishers that publish posters: Figsare (figshare.com), Nature Precedings (precedings.nature.com), BioMedCentral CCO Waiver for open data, OpenScholar (www.openscholar.org.uk) and offers a set fee of $100. In contrast, Libre (libreapp.org), run by Open Scholar (www.openscholar.org.uk), wants to work with journals, offering an “author-guided open peer review process” that can run parallel to the publication process. Authors are encouraged to submit papers at any point before, during or after publication. A third site, Publons (www.publons.com), looks at peer review from the other direction. It provides a reviewer-led forum whereby reviewers identify a paper they wish to comment on, upload a review, and obtain a DOI for their contributions once they are endorsed. Peer Evaluation (peerevaluation.org) is harder to define. It offers an open-access repository for all research content with an open peer review system. Under the tagline ‘empowering scholars’ it relies on peer networking and is entirely free to all users.

Publishing horror stories
How long should an author expect to wait between first submission and publication? Simon Chapman, an Australian professor of public health and former journal editor, recounts the nightmare story of a paper first submitted in December 2010 and still not published. The paper was subjected to delays caused by online system failure, staff changes, failing processes, “incomprehensible, outrageous delays” and required changes that were “insubstantial matters of presentational preference.”
The story, published on BMJ Blogs (blogs.bmj.com; 27 September 2013).

Science: secrets and spoofs
The 4 October issue of *Science* was devoted to communication in science. The article that hit the headlines and gained very wide coverage was a story called ‘Who’s afraid of peer review?’ (p60), in which scientist and journalist John Bohanen submitted spoof research papers to 304 open-access (OA) journals. More than half (157) of the journals accepted the obviously-nonsensical paper, with 98 rejecting it and 49 doing neither. The article showed that there are many very poor OA journals there are, but critics pointed out that Bohanen didn’t look at any subscription journals as a comparison. Elsewhere in the issue is an intriguing article (p/71) about a new journal called the Journal of Sensitive Cyber Research and Engineering (cybersecurity.nitrd.gov/issue). This journal provides a forum for peer-reviewed research on sensitive government-funded work. You can only publish in it or read it if you have security clearance from the US government, although authors are asked to provide non-secret titles and abstracts.

Unlocking the value of research data
The volume of scholarly and scientific research data available is projected to grow to more than 35 zettabytes by 2020, according to a report by Thomson Reuters. (A zettabyte is 10^31 bytes, or a trillion gigabytes.) That’s quite a lot of data. The report, written in collaboration with industry experts, identified a series of recommendations to deal with the complexity and scholarly challenges that arise from this growth. Among the challenges highlighted are providing uniform access to research outputs, filtering and peer review of data, incentives for researchers to make work attributable and new publishing models. The report is available at collaborativeresearch.thomsonreuters.com.

ALM collaborations
Faculty of 1000’s F1000 Prime service (F1000.com/prime) has partnered with Public Library of Science (PLOS) to add both PLOS article-level metrics and F1000 recommendations to articles included in F1000 Prime, providing a mix impact measures. *BMJ* and Wiley are both collaborating with Altmetric (www.altmetric.com), a company that provides altmetrics data and a distinctive ‘donut’ display at the article level.

Transfer code of practice update
The UKSG Transfer Working Group (www.uksg.org/transfer) has developed a new code of practice for the transfer of journals between publishers. The new version covers redirection, content types, and communication, among other issues.

New video journal
Elsevier has launched a new publication called *Video Journal and Encyclopedia of GI Endoscopy* (www.vjgi-endoscopy.com). As the name suggests, it aims to provide both an encyclopaedic resource and a scientific journal based on high-quality video presentations. The journal is open access and is produced in partnership with the German Society for Ultrasound in Medicine and with Fujifilm.

Conflict of interest at PubMed Central saga continues
Kent Anderson wrote a summary of his investigations into the links between *eLife* and the US National Library of Medicine, which is responsible for PubMed Central. The summary includes additional information received in response to a Freedom of Information request - which resulted in 859 pages of documentation (http://scholarlykitchen.sspnet.org/2013/10/15/pubmed-central-and-eLife-new-documents-reveal-more-evidence-of-impropriety-and-bias/). It’s worth reading in full as it reveals how not all journals are created equal in the eyes of some of the key people at NLM. Priority treatment was clearly given to *eLife*, allowing it to post articles on PMC before it had actually been launched as a journal. This could be viewed as a trivial bending of the rules: Anderson’s digest shows just how many rules had to be bent, how PMC staff had to do extra work to enable this, in Anderson’s words “lying” to PMC’s own systems and processes, but most disturbingly there is clear awareness that what they are doing is inappropriate, reflected in their wish to conceal this special treatment from the community at large.

PubMed search results - lead to where?
Another post by Kent Anderson tackles a different aspect of PubMed Central, asserting that the way the interface is set up directs reader traffic to PMC versions of articles, with the publisher versions requiring an additional click to reach. Fair play in a competitive world: the National Library of Medicine wants readers on its own site, so that it can showcase its information management tools. The nub of the issue is again transparency: if PMC wants to compete with publishers for traffic, this should be admitted. Perhaps the most memorable part of this article was its use and definition of a “docsum”, short for a “document summarization”.

Usage-driven acquisition
This is becoming a buzzword (or phrase) amongst publishers as librarians are increasingly able to monitor which parts of their collections are being read - or at least downloaded. The latest announcement is for a usage-driven acquisition purchase model for e-books. It comes from Gale, part of Cengage Learning and a publisher of research and reference resources for libraries, schools and businesses. Libraries will pay a deposit then get complete access to the full Virtual Reference Library for six months. The e-books with the greatest usage will then be automatically added to the library’s collection and their price deducted from the initial deposit.

European Science Editing

John Hilton
Editor, Cochrane Editorial Unit, Cochrane Collaboration, London, UK

john.hilton@gmail.com
ECONOMICS AND FUNDING

This article from the Nature Special, Future of Publishing, points out the different views on the costs of publishing. It discusses the true cost of science publishing and the value publishers add for their money. While some publishers report very low costs per article, others expect their cost per paper to be much higher. If a switch to open access publishing leads scientists to drive down fees by choosing cheaper journals, it will undermine important values such as editorial quality.
doi: 10.1038/495426a

EDITORIAL PROCESS

Altman DG, Moher D. Declaration of transparency for each research article. BMJ 2013;347:f4796
This editorial is putting forward a new proposal for scientific journals to include a “transparency declaration” that authors should sign for all article submissions. The declaration asks the lead author to confirm that the article is an “honest, accurate, and transparent account of the study being reported”. The BMJ and BMJ Open have already implemented this policy and are urging other journals to do likewise.
doi: 10.1136/bmj.f4796

A prime concern for authors is whether the publication options offer good chances for citations, which are crucially important for academic competitiveness. It has become common practice to initially target high-impact journals and, in case of rejections, approach lower rank journals. What might suffer as a consequence of the global competition is quality, which thereby demands a more comprehensive approach to the avenue of publication and its promotion.

In this article the authors propose a novel idea of a Reviewer Index (RI), Reviewer Index Directory (RID) and Global Reviewer Index Directory (GRID), which would strengthen science by focusing on the reviewer, as well as the author. These can be applied to all journals, irrespective of their specialty. Adopting this approach would make available well-trained reviewers of high quality and sufficient quantity.
doi: 10.4103/0973-1229.109347

ETHICAL ISSUES

The article intends to determine the prevalence of honorary authorship in biomedical publications and identify the factors that inspire it. Results of a survey showed that honorary authorship is relatively common. Each institution should encourage its researchers to comply with the International Committee of Medical Journal Editors (ICMJE) criteria for authorship, recently revised.
doi: 10.1136/medethics-2012-101311

Bošnjak L, Marušić A. Prescribed practices of authorship: review of codes of ethics from professional bodies and journal guidelines across disciplines. Scientometrics 2012;93(3):751-763
The lack of and variety of authorship definitions in journals and professional organizations across scientific disciplines may be confusing for researchers and lead to poor authorship practices. This study assesses the prevalence of authorship statements, their specificity and tone, and contributions required for authorship in selected scientific journals and codes of ethics from professional organizations.
doi: 10.1007/s11192-012-0773-y

Salem DN. Conflict of interest in open-access publishing. The New England Journal of Medicine 2013;369:491
Open access publishing generates numerous legal issues including ownership of intellectual property, licensing, embargo periods, consent, copyright, expiration of older literature, “fair use” policies, indexing and archiving, and preservation of works. Overall, the most relevant issue is the rigorous scrutiny of potential conflicts of interest, like for example, the inherent conflict of interest in the “author pays” model.
doi: 10.1056/NEJMc1307577

INFORMATION RETRIEVAL

Moher D. The problem of duplicate systematic reviews. BMJ 2013;347:f5040
The best way to reduce unnecessary duplication of systematic reviews may be to make it compulsory for reviewers to identify existing relevant reviews, either protocols or completed reviews, before conducting their own. PROSPERO is an international prospective register that can be used to search for existing systematic review protocols.
doi: 10.1136/bmj.f5040

LANGUAGE AND WRITING

Most medical writers received their education on the job rather than...
through formal channels. However, formal education gives a more uniform foundation of knowledge than does experience alone. This article addresses some of the differences between education and training, educational approaches and delivery methods, and potential effects on employment prospects. doi: 10.1179/2047480612Z.00000000081

Joshi Y. Style guides that refuse to go away. Learned Publishing 2013;26(2):133-134

The article discusses the relevance and utility of the minutiae that style guides and specifications insist on in restructuring submitted manuscripts for publication. The author believes that it is time to reorient copy-editing on making the text simple, lucid, and euphonious. Problems in styling also occur in electronic books, web pages and audiobooks. doi: 10.1087/20130210

PUBLISHING

Masic I. Medical publication and scientometrics. Journal of Research in Medical Sciences 2013;18:516-521

This paper describes research methods, choice of study design, data collection methods, data analysis, and writing and publication of results. It also explains why scientific research work should be carried out and what kind of satisfaction it provides to researchers. A special emphasis is placed on the importance of scientometric indicators.

The Lancet, as a member of the International Committee of Medical Journal Editors (ICMJE), fully supports the new (August 2013) ICMJE Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals (previously known as URM’s or Vancouver guidelines). They include a fourth criterion for authorship, that is “agreement to be accountable for all aspects of the work thereby ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.”

doi:10.1016/S0140-6736(13)61815-2

This article provides a brief overview of general principles of reporting medical research studies with a particular focus on randomised controlled trials, analytical observational studies, and systematic reviews and meta-analyses. The main reporting guidelines, such as CONSORT, STROBE, PRISMA, and EQUATOR are introduced. doi: 10.1111/j.1477-8923.2011.012168

Singleton A. Publishing - is our love here to stay... Learned Publishing 2013;26:155-156

The author examines the present challenges that exist for academic publishers and any kind of corporate publishing, such as potential technological obsolescence, legitimacy of publishers’ role and of the “product” that they have been responsible for, and the rise of new systems with or without supporting business models. doi: 10.1087/320130301

RESEARCH EVALUATION

This editorial presents a statement on the misuse and overuse of the impact factor, the San Francisco Declaration on Research Assessment (DORA). It aims to stop the use of the journal impact factor in judging an individual scientist’s work, and provides a list of specific actions to be taken by funding agencies, institutions, publishers, researchers, and the organizations that supply metrics.

doi: 10.1126/science.1240319

Bornmann L, Marx W, Barth A. The normalization of citation counts based on classification systems. Publications 2013;1(2):78-86

This study describes an ideal solution for the normalization of citation impact through the application of a systematic, high-quality classification system with the advantages of a simple procedure and the balance of fairness of the resulting citation counts.

doi: 10.3390/publications1020078

An increasing proportion of biomedical research relies on the use of biobanks and bioresources. The need to incentivise the development, maintenance, and sharing of bioresources requires an appropriate set of principles, tools, and guidelines. This article proposes to measure the use of bioresources in scientific research as an indicator of their impact, leading to the creation of the Bioresource Research Impact Factor (BRIF).

This article considers the complementary relationship between open access journal publishing and alternative metrics (altmetrics). These have arisen to better assess the influence and impact of online journal articles, and are still new, relatively unexplored and underdeveloped.

SCIENCE COMMUNICATION

This editorial provides an overview of the landscape of medical social-media (weblogs, forums or social network platforms that deal with health-related issues) and their possibilities in supporting healthcare. It introduces three papers of a Focus Theme considering different aspects of web science in medicine.

Anna Maria Rossi
Publishing Unit
Istituto Superiore di Sanità, Rome
annamaria.rossi@iss.it
Correspondence

Joining the European Association of Science Editors

As a junior Somali doctor practicing psychiatry, I learned about the European Association of Science Editors (EASE) through an international partnership project between Somalia and the King’s College London and joined this organization as a sponsored member in October 2012. I was confident that the membership could be helpful for advancing my experience in science writing and editing and for establishing medical journalism in the region. My knowledge and skills, which are now largely based on information from the EASE Science Editors’ Handbook, resource library of AuthorAID and the European Science Editing journal allowed me to run the newly launched Somaliland Medical Association Journal and the bi-annual newsletter of the Amoud Medical School (English & Somali), where I took the post of Editor in Chief.

Through the EASE network, I established ties with the AuthorAID community. The AuthorAID Resource Library and the Online Course for Researchers from Developing Countries were also useful for upgrading my writing and editing skills. Thanks to all these, I managed to publish several papers on in-patient care and psychiatric services in Somali in great journals such as the American Journal of Psychiatry and the Arab Journal of Psychiatry. Several other papers have also been written and prepared for submission. Importantly, my colleagues and supervisors from the global health centre, King’s College London, who worked on several joint projects, generously supported and contributed to my papers, mostly by helping with the language-related issues.

I feel that I must thank Dr Joan Marsh, President of EASE, Tina Wheeler, Secretary at EASE, and Dr Daniel Fekadu from the Institute of Psychiatry, King’s College London, for their guidance and extensive support over the past few years. Special thanks go to Hervé Maisonneuve, Editor Emeritus of European Science Editing, for sponsoring my membership of EASE.

Jibril Handuleh
Addis Ababa University, Addis Ababa, Ethiopia

John W. Glen:
a deserving recipient of the Richardson Medal

The IGS has awarded the Society’s Richardson Medal to John Glen. Appropriately, John received the medal at the 2013 IGS British Branch meeting in Loughborough, as John was instrumental in founding the British Branch back in 1974, and 2013 marks the 60th anniversary of his original appointment to the Advisory Committee of the Journal of Glaciology.

John Glen’s contribution to the field of Glaciology, and to the International Glaciological Society has been outstanding, has earned international recognition, and has continued over a period of about 65 years. John has served either as the Journal of Glaciology Chief Editor or as a member of the Editorial Board for a period, this year, of 60 years.

‘In recognition of 60 years of service as an Editor of the Journal of Glaciology, of continuous participation in meetings of the IGS and especially of the British Branch Meetings, and of a lifetime of personal engagement with the people who conduct glaciological research, so as to improve both the quality of their science and the effectiveness of their communication, the IGS awards the Richardson Medal to John W. Glen.’